山东省青岛市2020届高三数学第三次模拟试题(含解析)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中只有一项是符合题目要求的.1.若复数(i为虚数单位),则复数z在复平面上对应的点所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】【分析】先利用复数的四则运算得到,从而得到复数对应的点,故可得正确的选项.【详解】,复数z在复平面上对应的点为,该点在第二象限,故复数z在复平面上对应的点所在的象限为第二象限,故选:B.【点睛】本题考查复数的四则运算以及复数的几何意义,注意复数的除法是分子分母同乘以分母的共轭复数,本题属于基础题.2.已知全集,集合,集合,则()A.B.C.D.【答案】A【解析】【分析】化简集合M,N,根据集合的交集、补集运算求解即可.【详解】,,,,故选:A【点睛】本题主要考查了集合的交集、补集运算,考查了一元二次不等式,余弦函数,属于容易题.3.如图是一个列联表,则表中、处的值分别为()总计总计A.,B.,C.,D.,【答案】B【解析】【分析】根据表格中的数据可先求出、的值,再结合总数为可分别求得和的值.【详解】由表格中的数据可得,,,.故选:B.【点睛】本题考查列联表的完善,考查计算能力,属于基础题.4.若直线,.,与平行,则下列选项中正确的()A.p是q的必要非充分条件B.q是p的充分非必要条件C.p是q的充分非必要条件D.q是p的非充分也非必要条件【答案】C【解析】【分析】根据与平行,得到或,再根据集合的关系判断充分性和必要性得解.【详解】因为与平行,所以或.经检验,当或时,两直线平行.设,或,因为,所以p是q的充分非必要条件.故选:C.【点睛】本题主要考查两直线平行的应用,考查充分必要条件的判断,意在考查学生对这些知识的理解掌握水平.5.在中,如果,那么的形状为()A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形【答案】A【解析】【分析】结合以及两角和与差的余弦公式,可将原不等式化简为,即,又,,所以与一正一负,故而得解.【详解】解:,,,即与异号,又,,与一正一负,为钝角三角形.故选:A.【点睛】本题考查三角形形状的判断,涉及到三角形内角和、两角和与差的余弦公式,考查学生的逻辑推理能力和运算能力,属于基础题.6.中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种.现有十二生肖的吉祥物各一个,已知甲同学喜欢牛、马和猴,乙同学喜欢牛、狗和羊,丙同学所有的吉祥物都喜欢,让甲乙丙三位同学依次从中选一个作为礼物珍藏,若各人所选取的礼物都是自己喜欢的,则不同的选法有()A.50种B.60种C.80种D.90种【答案】C【解析】【分析】根据题意,按甲的选择不同分成2种情况讨论,求出确定乙,丙的选择方法,即可得每种情况的选法数目,由分类加法计数原理,即可求出答案.【详解】解:根据题意,按甲的选择不同分成2种情况讨论:若甲选择牛,此时乙的选择有2种,丙的选择有10种,此时有种不同的选法;若甲选择马或猴,此时甲的选法有2种,乙的选择有3种,丙的选择有10种,此时有种不同的选法;则一共有种选法.故选:C.【点睛】本题考查分步乘法和分类加法的计数原理的应用,属于基础题.7.在三棱柱中,,侧棱底面ABC,若该三棱柱的所有顶点都在同一个球O的表面上,且球O的表面积的最小值为,则该三棱柱的侧面积为()A.B.C.D.3【答案】B【解析】【分析】设三棱柱的上、下底面中心分别为、,则的中点为,设球的半径为,则,设,,在△中,根据勾股定理和基本不等式求出的最小值为,结合已知可得,从而可得侧面积.【详解】如图:设三棱柱上、下底面中心分别为、,则的中点为,设球的半径为,则,设,,则,,则在△中,,当且仅当时,等号成立,所以,所以,所以,所以该三棱柱的侧面积为.故选:B.【点睛】本题考查了球的表面积公式,基本不等式求最值,考查了求三棱柱的侧面积,属于基础题.8.已知函数,若函数有13个零点,则实数的取值范围为()A.B.C.D.【答案】D【解析】【分析】由题可知,设,且恒过定点,转化为函数与函数的图象有13个交点,画出函...