第1讲鸡兔同笼问题一、学习目标:1、了解鸡兔同笼问题,感受古代数学趣题的魅力。2、自学例1,培养用多种方法,如:列表法、假设法、方程法解决问题的能力。3、利用鸡兔同笼问题培养初步的逻辑思维能力。二、教学过程例1:笼子里有若干只鸡和兔,从上面数,有10个头,从下面数,有24只脚。鸡和兔各有多少只?分析假设全部是鸡,则脚的只数为:10×2=20(只)这比题目的24只脚少(24-20)只,为什么会少4只脚呢?因为笼子里有部分是兔,每只兔少算2只脚,所以兔的只数为:4÷2=2(只);则鸡的只数为:10-2=8(只)。解:兔的只数:(24-10×2)÷2=2(只)鸡的只数:10-2=8(只)答:鸡有8只,兔有2只。方法点评用假设法解鸡兔同笼问题时,记住下面的关系式:1.(总足数-总头数×鸡足数)÷2(兔与鸡的足数差)=兔数总头数-兔数=鸡数2.(总头数×兔足数-总足数)÷2(兔鸡足数差)=鸡数总头数-鸡数=兔数、有龟和鹤共24只,腿共68只。龟、鹤各有几只?例2小明的存钱罐里有2角和5角的人民币共12张,合计3元9角。2角、5角的人民币各有几张?分析与解可以用方程解答:设5角的人民币有x张,那么2角的人民币就是(12-x)张。根基合计的钱数为3元9角,可以列出方程。解:设5角的人民币有x张,那么2角的人民币就是(12-x)张。可以列出方程。5x+2(12-x)=3924+3x=393x=15X=512-x=12-5=7(张)答:2角的人民币有7张,5角的人民币有5张。方法点评用方程解这类问题,通常设较大量为x,有利于解答。随堂练习二:自行车和三轮车共12辆,总共有28个轮子。自行车和三轮车共有多少辆?拓展训练1、实验小学的教师和学生共100人去植树,教师平均每人栽3棵树,学生平均每人栽1棵树,一共栽150棵树。教师、学生各有多少人?2、学校买了4个足球和3个排球,共用去169元。每个足球比每个排球贵2元。足球和排球的单价各是多少元?3、王奶奶家有鸡兔若干,已知鸡比兔多13只,鸡的脚比兔的脚多16只。鸡、兔各有多少只?4、学校小卖部买钢笔和圆珠笔共用去90元,钢笔每支5元,圆珠笔每支2元。如果购买的钢笔和圆珠笔的支数互换,那么就用120元。小卖部买回的钢笔和圆珠笔各有多少支?5、有蜘蛛、蜻蜓和蝉三种动物共18只,它们共有腿118条,翅膀20对,三种动物各有的多少只?(其中,蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀)。6、比赛规则,答对一题加10分,答错一题扣6分。(1)2号选手共抢答8题,最后得64分。她答对了几题?(2)1号选手共抢答10题,最后得分36分。她答错了几题?(3)3号选手共抢答16题,最后得分16分。他答对了几题?第2讲倒推法解题一、教学目标:1.使学生学会运用“倒过来推想”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题步骤。2.使学生在对解决实际问题过程的不断反思中,感受“倒过来推想”的策略对于解决特定问题的价值,进一步发展分析、综合和进行简单推理的能力。二、教学过程例1:李大爷提篮去卖蛋,第一次卖鸡蛋全部的一半又半个,第二次卖了余下的一半又半个,第三次卖了第二次余下的一半又半个,第四次卖了第三次余下的一半又半个。这时,鸡蛋都卖完了。李大爷篮中原有鸡蛋多少个?分析与解最后篮内鸡蛋的个数为0个第三次卖蛋后余下的鸡蛋个数(0+)×2=1(个)第二次卖蛋后余下的鸡蛋个数(1+)×2=3(个)第一次卖蛋后余下的鸡蛋个数(3+)×2=7(个)原有鸡蛋的个数(7+)×2=15解:{【(×2+)×2+】×2+}×2=15(个)答:李大爷原有鸡蛋15个。随堂练习一:一捆电线,第一次用去全长的一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米。这捆电线原有多少米?例2李白买酒:“无事街上走,提壶去买酒,遇店加一倍,见花喝一斗,三遇店和花,喝光壶中酒。”问壶里原有多少酒?分析与解根据倒推法想:喝光壶中酒,第三次见花前应有酒多少;第三次遇店前应有酒多少,依次类推则有:解:【(1÷2+1)÷2+1】÷2=【÷2+1】÷2=(斗)答:壶中原有酒斗。随堂练习二:3只猴子吃栏里的桃子,第一只猴子吃了,第二只猴子吃了剩下的,第三只猴子吃了第二只剩下的,最后篮里还有6只桃子。求篮里原有桃子多少只?拓展训练1...