一、教材、学情分析二、教学目标、重难点分析三、教法、学法分析四、教学流程一、教材结构与内容简析函数与方程思想是中学数学的重要思想。本节是在学习了前两章函数性质的基础上,利用函数的图象和性质来判断方程的根的存在性及根的个数,从而了解函数的零点与方程的根的关系以及掌握函数在某个区间上存在零点的判定方法;为下节“二分法求方程的近似解”和后续学习的算法提供基础.因此本节内容具有承前启后的作用,非常重要.二、学情分析在此之前,学生对一元二次函数和一元二次方程已经比较熟悉,会判断具体的一元二次方程有没有根,有几个根,会用求根公式求根。但是对一元二次函数与方程的联系认识不全面,也没有上升到一般的函数与方程的层次。因此,在讲解本节内容时,让学生对函数与方程的关系及零点存在定理有较为全面的认识。二、教学目标(一)认知目标:1.理解函数的零点与方程的根的联系.2.理解并会用零点存在定理判断函数的零点.(二)能力目标:体会数形结合思想,转化思想以及函数与方程思想的意义和价值,培养学生自主发现、探究实践的能力.(三)情感目标:培养学生锲而不舍的探索精神和严密思考的良好学习习惯。三、教学重点、难点教学重点:理解函数的零点与方程的根之间的联系,掌握零点存在的判定条件.教学难点:探究发现函数零点的存在性.四、教法分析教法上,以问题为纽带,用问题引出内容,激发学生积极主动地进行探索;同时向学生渗透问题意识,培养学生发现问题、解决问题的能力。采用“提出问题——引导探究——得出结论——实际应用”的教与学模式.五、教学过程提出问题,激发学生思考函数零点概念零点存在定理巩固及应用总结提升课后作业巩固及应用一些复杂的方程无法求解,造成学生的认知冲突,引发学生的好奇心和求知欲。此时开门见山的提出用函数的思想解决方程根的问题,点明本节课的课题。(一)设问激疑,引出课题设计意图五、教学过程求方程3x2-6x+1=0的实数根变式:求下列方程的实数根3x3-6x+1=0问题1:lnx+2x-6=0(二)启发引导,逐步深入五、教学过程设计意图以问题激发学生思考,将大问题分解为几个小问题,自然地得到函数和方程的初步认识。让学生体会到如何分析问题。一元二次方程ax2+bx+c=0(a≠0)与二次函数y=ax2+bx+c(a≠0)有什么联系?问题2:子问题:形式上有什么相同点?有什么不同点?怎样可以由函数得到方程?(三)数形结合,巩固认识五、教学过程观察下表(一),求出表中一元二次方程的实数根,画出相应的二次函数图象的简图,并说出方程的根和函数图象与x轴交点的坐标之间的关系.一元二次方程方程的根二次函数函数的图象(简图)图象与x轴交点的坐标2230xx223yxx2210xx221yxx0322xx322xxy设计意图以实例说明方程、函数、函数图象三者的关系,渗透数形结合的思想。为引入函数零点的概念打下基础。方程的根函数值y=0时的x的值函数图象与x轴交点的横坐标x1=-1,x2=3xy0-132112-1-2-3-4(-1,0)(3,0)板书五、教学过程若将上面特殊的一元二次方程推广到一般的一元二次方程20axbxc(0)a及相应的二次函数cbxaxy2(0)a的图象与x轴交点的关系,上述结论是否仍然成立?(观察表二)20axbxc(0)a方程的根函数的图象(简图)图象与x轴的交点000设计意图从具体到一般,从简单到复杂,培养学生的思维能力和归纳能力.(三)数形结合,巩固认识五、教学过程设计意图自然地得出函数零点的概念。(四)顺水推舟,得出概念方程f(x)=0的实数根函数y=f(x)的图象与x轴交点的横坐标函数y=f(x)的零点函数值等于零时的x的值五、教学过程设计意图自然地得出等价关系。(四)顺水推舟,得出概念方程f(x)=0有实数根函数y=f(x)的图象与x轴有交点函数y=f(x)有零点1.会判断函数是否有零点;2.会用解方程的方法求简单的函数零点;3.体会方程与函数的联系;4.明确函数的零点是一个实数。(五)概念辨析,巩固新知设计意图五、教学过程1)1(xy1(2)yxxy2)3(2(4)log2yx判断下列函数是否有零点,若有,请求出设计意图五、教学过程(六)提出问题,探索零点存在定理问3:函...