电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学理科选修复数的概念课件2 课件VIP免费

高中数学理科选修复数的概念课件2 课件_第1页
1/14
高中数学理科选修复数的概念课件2 课件_第2页
2/14
高中数学理科选修复数的概念课件2 课件_第3页
3/14
复数的概念复数的概念知识回顾对于实系数一元二次方程,当时,没有实数根.我们能否将实数集进行扩充,使得在新的数集中,该问题能得到圆满解决呢?02cbxax042acb解决这一问题,其本质就是解决一个什么问题呢?复数的概念自然数有理数整数无理数实数复数数系的扩充复数的概念引入一个新数,叫做虚数单位,并规定:ii(1)它的平方等于-1,即(2)实数可以与它进行四则运算,进行四则运算时,原有的加、乘运算律仍然成立.12i形如的数,叫做复数.)R,(babia全体复数所形成的集合叫做复数集,一般用字母C表示.NZQRCNZQR新授课复数的概念新授课复数的表示:通常用字母z表示,即),(Rbabiaz当时,z是实数a.0b当时,z叫做虚数.0b当a=0且时,z=bi叫做纯虚数.0b实部虚部复数复数的概念例1实数m取什么值时,复数是(1)实数?(2)虚数?(3)纯虚数?immz)1(1解:(1)当,即时,复数z是实数.01m1m(2)当,即时,复数z是虚数.01m1m(3)当,且,即时,复数z是01m01m1m纯虚数.新授课复数的概念新授课如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等.即如果,那么Rdcba,,,dbcadicbia,例2已知,其中,求iyyix)3()12(Ryx,.yx与解:更具复数相等的定义,得方程组)3(112yyx所以4,25yx复数的概念课堂小结1.复数有关的概念,复数的代数表示形式;2.复数相等的定义.作业:198P习题5.11.3练习课后练习1,2,3自然数概念可溯源于原始人类用匹配方法计数。古希腊人用小石卵记畜群的头数或部落的人数。英文calculate(计算)一词是从希腊文calculus(石卵)演变来的。中国古藉《易.系辞》中说:「上古结绳而治,后世圣人易之以书契。」直至1889年,皮亚诺才建立自然数序数理论。自然数返回零不仅表示「无」,更是表示空位的符号。中国古代用算筹计算数并进行运算时,空位不放算筹,虽无空位记号,但仍能为位值记数与四则运算创造良好的条件。印度-阿拉伯命数法中的零(zero)来自印度的(sunya)字,其原意也是「空」或「空白」。中国最早引进了负数。《九章算术.方程》中论述的「正负数」,就是整数的加减法。减法的需要也促进了负整数的引入。减法运算可看作求解方程a+x=b,如果a,b是自然数,则所给方程未必有自然数解。为了使它恒有解,就有必要把自然数系扩大为整数系。整数返回分数原始的分数概念来源于对量的分割。如《说文·八部》对“分”的解释:“分,别也。从八从刀,刀以分别物也。”但是,《九章算术》中的分数是从除法运算引入的。其“合分术”有云:“实如法而一。不满法者,以法命之。”这句话的今译是:被除数除以除数。如果不能除尽,便定义了一个分数。古埃及人约于公元前17世纪已使用分数。返回为表示各种几何量(例如长度、面积、体积)与物理量(例如速率、力的大小),人类很早已发现有必要引进无理数。约在公元前530,毕达哥拉斯学派已知道边长为1的正方形的对角线的长度(即)不能是有理数。15世纪达芬奇(LeonardodaVinci,1452-1519)把它们称为是“无理的数”(irrationalnumber),开普勒(J.Kepler,1571-1630)称它们是“不可名状”的数。法国数学家柯西(A.Cauchy,1789-1875)给出了回答:无理数是有理数序列的极限。由于有理数可表示成有限小数或无限循环小数,人们想到用“无限不循环小数”来定义无理数,这也是直至19世纪中叶以前的实际做法。2无理数返回实数系的逻辑基础直到19世纪70年代才得以奠定。从19世纪20年代肇始的数学分析严密化潮流,使得数学家们认识到必须建立严格的实数理论,尤其是关于实数系的连续性的理论。在这方面,外尔斯特拉斯(1859年开始)、梅雷(1869)、戴德金(1872)与康托尔(1872)作出了杰出的贡献。实数返回复数从16世纪开始,解高于一次的方程的需要导致复数概念的形式。用配方法解一元二次方程就会遇到负数开平方的问题。卡尔达诺在《大法》(1545)中阐述一元三次方程解法时,发现难以避免复数。关于复数及其代数运算的几何表示,是18世纪末到19世纪30年代由韦塞尔、阿尔根和高斯等人...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学理科选修复数的概念课件2 课件

您可能关注的文档

慧源书店+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部