应用空间向量解立体几何之用平面法向量求空间距离BAMNnab一、求异面直线的距离nnABnABABd,cos方法指导:①作直线a、b的方向向量a、b,求a、b的法向量n,即此异面直线a、b的公垂线的方向向量;②在直线a、b上各取一点A、B,作向量AB;③求向量AB在n上的射影d,则异面直线a、b间的距离为方法指导:①作直线a、b的方向向量a、b,求a、b的法向量n,即此异面直线a、b的公垂线的方向向量;②在直线a、b上各取一点A、B,作向量AB;③求向量AB在n上的射影d,则异面直线a、b间的距离为例2:已知正方体ABCD-A1B1C1D1的棱长为1,求异面直线DA1与AC的距离。ABDCA1B1C1D1xyz练习:如图,的距离。与,求距离为的到面,点所成的角为面与,且面是正方形,SDACABCDSABCDSAABCDSBABCD145ASCDBxyz例3、已知正方形ABCD的边长为4,CG⊥平面ABCD,CG=2,E、F分别是AB、AD的中点,求点B到平面GEF的距离。DABCGFE||||||||||||sin||||nPAnPAnPAnPAPAPOd如图点P为平面外一点,点A为平面内的任一点,平面的法向量为n,过点P作平面的垂线PO,记PA和平面所成的角为,则点P到平面的距离nAPO二、求点到平面的距离例3、已知正方形ABCD的边长为4,CG⊥平面ABCD,CG=2,E、F分别是AB、AD的中点,求点B到平面GEF的距离。DABCGFExyz练习:的距离。到平面求,,,平面SCDAaADaBCABSAABCDABABCDSA,290SBCDAxyz例4、已知正方形ABCD的边长为4,CG⊥平面ABCD,CG=2,E、F分别是AB、AD的中点,求直线BD到平面GEF的距离。DABCGFExyznnPAd三、求直线与平面间距离例5、在边长为1的正方体ABCD-A1B1C1D1中,M、N、E、F分别是棱A1B1、A1D1、B1C1、C1D1的中点,求平面AMN与平面EFDB的距离。ABCDA1B1C1D1MNEFxyznnPAd四、求平行平面与平面间距离小结:1、怎样利用向量求距离?①点到平面的距离:连结该点与平面上任意一点的向量在平面定向法向量上的射影(如果不知道判断方向,可取其射影的绝对值)。②点到直线的距离:求出垂线段的向量的模。③直线到平面的距离:可以转化为点到平面的距离。④平行平面间的距离:转化为直线到平面的距离、点到平面的距离。⑤异面直线间的距离:转化为直线到平面的距离、点到平面的距离。也可运用闭合曲线求公垂线向量的模或共线向量定理和公垂线段定义求出公垂线段向量的模。结论1点P到平面的距离可以通过,在平面内任取一点A,求向量PA�在平面的法向量n上的投影来解决.nPAOMNPAndn�结论2异面直线间的距离可以通过,在两条直线上任意各取一点A、B,求向量AB�在公共法向量n上的投影来解决.BAMNnABndn�ab