倍长与中点有关的线段①②③④⑤⑥①号模型:倍长中线构造三角形全等;②号模型:倍长类中线构造三角形全等;③号模型:出现多个中点,构造三角形中位线④号模型:平行线+截线中点构造8字形全等⑤号模型:直角三角形斜边中线(等于斜边一半)⑥号模型:等腰三角形底边中线(三线合一)倍长中线类?考点说明:凡是出现中线或类似中线的线段,都可以考虑倍长中线,倍长中线的目的是可以旋转等长度的线段,从而达到将条件进行转化的目的。【例1】已知:ABC中,AM是中线.求证:1()2AMABAC.MCBA【练1】在△ABC中,59ABAC,,则BC边上的中线AD的长的取值范围是什么【练2】如图所示,在ABC的AB边上取两点E、F,使AEBF,连接CE、CF,求证:ACBCECFC.FECBA【例2】如图,已知在ABC中,AD是BC边上的中线,E是AD上一点,延长BE交AC于F,AFEF,求证:ACBE.FEDCBA【练1】如图,已知在ABC中,AD是BC边上的中线,E是AD上一点,且BEAC,延长BE交AC于F,求证:AFEFFEDCBA【练2】如图,在ABC中,AD交BC于点D,点E是BC中点,EFAD∥交CA的延长线于点F,交AB于点G,若BGCF,求证:AD为ABC的角平分线.GFEDCBA【练3】如图所示,已知ABC中,AD平分BAC,E、F分别在BD、AD上.DECD,EFAC求证:EF∥ABFACDEB【例3】已知AM为ABC的中线,AMB,AMC的平分线分别交AB于E、交AC于F.求证:BECFEF.FEMCBA【练1】在RtABC中,F是斜边AB的中点,D、E分别在边CA、CB上,满足90DFE.若3AD,4BE,则线段DE的长度为_________.FEDCBA【练2】在ABC中,点D为BC的中点,点M、N分别为AB、AC上的点,且MDND.(1)若90A,以线段BM、MN、CN为边能否构成一个三角形若能,该三角形是锐角三角形、直角三角形或钝角三角形(2)如果2222BMCNDMDN,求证22214ADABAC.MNDABC【例4】如图所示,在ABC中,ABAC,延长AB到D,使BDAB,E为AB的中点,连接CE、CD,求证2CDEC.EDCBA【练1】已知ABC中,ABAC,BD为AB的延长线,且BDAB,CE为ABC的AB边上的中线.求证:2CDCEEDCBA