建立数学模型高二数学◆选修2-2◆导学案 编写: 刘方贵 张晓丽 审核:仇国宗 陈兆平 袁全升 2011-03-21§1.4 生活中的优化问题举例教学目标:1.使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用2. 提高将实际问题转化为数学问题的能力教学重点:利用导数解决生活中的一些优化问题.教学难点:利用导数解决生活中的一些优化问题. 一.创设情景生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.这一节,我们利用导数,解决一些生活中的优化问题.二.新课讲授导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面:1、与几何有关的最值问题;2、与物理学有关的最值问题;3、与利润及其成本有关的最值问题;4、效率最值问题。解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系。再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具.利用导数解决优化问题的基本思路:三.典例分析例 1.海报版面尺寸的设计 学校或班级举行活动,通常需要张贴海报进行宣传。现让你设计一张如图 1.4-1 所示的竖向张贴的海报,要求版心面积为 128dm2,上、下两边各空 2dm,左、右两边各空 1dm。如何设计海报的尺寸,才能使四周空心面积最小?练习 1、一条长为 l 的铁丝截成两段,分别弯成两个正方形,要使两个正方形 的面积和最小,两段铁丝的长度分别是多少?例 2.饮料瓶大小对饮料公司利润的影响(1)你是否注意过,市场上等量的小包装的物品一般比大包装的要贵些?(2)是不是饮料瓶越大,饮料公司的利润越大?【背景知识】:某制造商制造并出售球型瓶装的某种饮料.瓶子的制造成本是 分,其中 是瓶子的半径,单位是厘米。已知每出售 1 mL 的饮料,制造商可获利 0.2 分,且制造商能制作的瓶子的最大半径为 6cm问题:(1)瓶子的半径多大时,能使每瓶饮料的利润最大?本节课精华记录 预习心得:解决数学模型作答用函数表示的数学问题优化问题用导数解决数学问题优化问题的答案1高二数学◆选修2-2◆导学案 编写: 刘方贵 张晓丽 审核:仇国宗 陈兆平 袁全升 2011-03-21 (2)瓶子的半径...