第 1 页 共 16 页第二十八章 锐角三角函数单元复习一、知识点回顾1. 锐角∠A 的三角函数(按右图 Rt△ABC 填空) ∠A 的正弦:sinA = , ∠A 的余弦:cosA = ,∠A 的正切:tanA = , ∠A 的余切:cotA = 2. 锐角三角函数值,都是 实数(填写“正”、“负”或者“0”);3. 正弦、余弦值的大小范围: <sin A< ; <cos A< 4. sinA = cos(90° ); cosA = sin( )tanA = cot( ); cotA = 5. 将、、角的四个三角函数值填入下表:6. 在 Rt△ABC 中,∠C=90゜,AB=c,BC=a,AC=b, 1)三边关系(勾股定理): 2)锐角间的关系:∠ +∠ = 90° 3)边角间的关系:sinA = ; sinB = ;cosA = ; cosB= ; tanA = ; tanB = ;cotA = ;cotB = 。7. 图中角可以看作是点 A 的 角,也可看作是点 B 的 角;8. ,tan A•cotA = ; 。9. (1)坡度(或坡比)是坡面的 高度()和 长度( )的比。记作 ,即 = ;(2)坡角——坡面与水平面的夹角。记作,有 i== (3)坡度与坡角的关系:坡度越大,坡角就越 ,坡面就越 。二、巩固练习(一)三角函数的定义及性质10.在△中,,则 cos的值为 11.在 Rt⊿ABC 中,∠C=90°,BC=10,AC=4,则;12.Rt△中,若,则 tan。ABCabcABCabcBAC(1 )1112第 2 页 共 16 页13.在△ABC 中,∠C=90°,,则 。14.已知 Rt△中,若cos,则。15.Rt△中,,那么。16.已知,且 为锐角,则的取值范围是 。17.已知:∠是锐角,,则的度数是 。 18.已知为锐角,若,= ;若,则。19.当角度在到之间变化时,函数值随着角度的增大反而减小的三角函数是 ( )A.正弦和正切 B.余弦和余切 C.正弦和余切 D.余弦和正切20.当时,锐角 A 的值为( ) A.小于 B.小于 C.大于 D.大于21.在⊿ABC 中,若各边的长度同时都扩大 2 倍,则锐角 A 的正弦址与余弦值的情况( )A.都扩大 2 倍 B.都缩小 2 倍 C.都不变 D.不确定22.在△ABC 中, , 则等于( )A. B. C. D.(二)特殊角的三角函数值23.在 Rt△ABC 中,已知∠C=900,∠A=450则= 24.已知:是锐角,,tan=______;25.已知∠A 是锐角,且;26.在平面直角坐标系内 P 点的坐标(,),则 P 点关于 轴对称点 P/的坐标为 ( ) A. B. C. D.27.下列不等式...