电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

升增分训练最值、范围、存在性问题VIP免费

升增分训练最值、范围、存在性问题_第1页
1/5
升增分训练最值、范围、存在性问题_第2页
2/5
升增分训练最值、范围、存在性问题_第3页
3/5
升级增分训练最值、范围、存在性问题1.(2016 ·贵阳监测考试 )已知椭圆C:y2a2+x2b2=1(a> b>0)的离心率为63 ,且椭圆C 上的点到一个焦点的距离的最小值为3-2.(1)求椭圆 C 的方程;(2)已知过点 T(0,2)的直线 l 与椭圆 C 交于 A,B 两点,若在 x 轴上存在一点E,使∠ AEB=90°,求直线l 的斜率 k 的取值范围.解: (1)设椭圆的半焦距长为c,则由题设有ca=63 ,a-c=3-2,解得 a=3,c=2,∴b2=1,故椭圆 C 的方程为 y23 +x2=1.(2)由已知可得,直线l 的方程为 y= kx+2,以 AB 为直径的圆与x 轴有公共点.设 A(x1,y1),B(x2,y2),AB 中点为 M (x0,y0),将直线 l:y=kx+2 代入 y23 +x2=1,得(3+k2)x2+4kx+1=0,则 Δ=12k2-12>0,x1+x2=-4k3+ k2,x1x2=13+k2.∴x0=x1+x22=-2k3+k2,y0=kx0+2=63+ k2,|AB|=1+k2·x1+x22- 4x1x2=1+ k2·12k2-123+k2=23k4-13+k2,∴Δ=12k2-12> 0,63+k2≤12|AB|,解得 k4≥13,即 k≥ 413或 k≤-413.故所求斜率的取值范围为(-∞,- 4 13]∪[ 4 13,+ ∞).2.(2016 ·西安质检 )如图所示,已知椭圆C 的中心在原点,焦点在x 轴上,离心率等于32 ,它的一个顶点恰好在抛物线x2=8y 的准线上.(1)求椭圆 C 的标准方程;(2)点 P(2,3),Q(2,-3)在椭圆上, A,B 是椭圆上位于直线 PQ 两侧的动点,当A,B 运动时,满足∠APQ=∠ BPQ,试问直线AB 的斜率是否为定值,请说明理由.解:(1)设椭圆 C 的标准方程为 x2a2+y2b2=1(a>b> 0). 椭圆的一个顶点恰好在抛物线x2= 8y 的准线 y=- 2 上,∴-b=- 2,解得 b=2.又ca=32 ,a2=b2+c2,∴a=4, c=23.可得椭圆 C 的标准方程为 x216+y24 =1.(2)设 A(x1, y1),B(x2,y2), ∠APQ=∠BPQ,则 PA,PB 的斜率互为相反数,可设直线 PA 的斜率为 k,则 PB 的斜率为- k,直线 PA 的方程为: y-3=k(x-2),联立y-3=k x-2 ,x2+ 4y2=16,消去 y,得(1+4k2)x2+8k(3-2k)x+4(3-2k)2-16=0,∴x1+2=8k 2k-31+4k2.同理可得: x2+2=-8k -2k-31+4k2=8k 2k+31+4k2,∴x1+x2=16k2-41+4k2 ,x1- x2=-163k1+4k2 ,kAB=y1-y2x1-x2=k x1+ x2 -4kx1-x2=36 .∴直线AB 的斜率为定值36 .3.(2016 ·贵阳期末 )已知椭圆 C 的两个焦点是...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

升增分训练最值、范围、存在性问题

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部