【课题】§2.3.2 方差与标准差 【教师】张 军【教学目标】(1)通过实例是学生理解样本数据的方差、标准差的意义和作用;(2)学会计算数据的方差、标准差;(3)使学生掌握通过合理抽样对总体的稳定性水平作出科学估计的思想.【教学重点】用样本数据的方差和标准差估计总体的方差与标准差.【教学过程】一、问题情境1.情境:有甲、乙两种钢筋,现从中各抽取一个标本(如表)检查它们的抗拉强度(单位:kg/mm2),通过计算发现,两个样本的平均数均为 125。甲110120130125120125135125135125乙1151001251301151251251451251452.问题:哪种钢筋的质量较好?二、学生活动由图可以看出,乙样本的最小值 100 低于甲样本的最小值 100,最大值 145 高于甲样本的最大值 135,这说明乙种钢筋没有甲种钢筋的抗拉强度稳定. 我们把一组数据的最大值与最小值的差称为极差(range)。由图可以看出,乙的极差较大,数据点较分散;甲的极差小,数据点较集中,这说明甲比乙稳定。运用极差对两组数据进行比较,操作简单方便,但如果两组数据的集中程度差异不大时,就不容易得出结论。 考察样本数据的分散程度的大小,最常用的统计量是方差和标准差。三、建构数学1.方差:一般地,设一组样本数据,,…, ,其平均数为,则称为这个样本的方差.因为方差与原始数据的单位不同,且平方后可能夸大了离差的程度,我们将方差的算术平方根称为这组数据的标准差.2.标准差: 标准差也可以刻画数据的稳定程度.3.方差和标准差的意义: 描述一个样本和总体的波动大小的特征数,标准差大说明波动大.四、数学运用1.例题:例 1.甲、乙两种水稻试验品种连续 5 年的平均单位面积产量如下(单位:t/hm2),试根据这组数据估计哪一种水稻品种的产量比较稳定。品种第 1 年第 2 年第 3 年第 4 年第 5 年甲9.89.910.11010.2乙9.410.310.89.79.8解:甲品种的样本平均数为 10,样本方差为 [(9.8-10)2 +(9.9-10)2+(10.1-10)2+(10-10)2+(10.2-10)2]÷5=0.02.乙品种的样本平均数也为 10,样本方差为 [(9.4-10)2+(10.3-10)2+(10.8-10)2+(9.7-10)2+(9.8-10)2]÷5=0.24因为 0.24>0.02,所以,由这组数据可以认为甲种水稻的产量比较稳定。例 2.为了保护学生的视力,教室内的日光灯在使用一段时间后必须更换。已知某校使用的 100 只日光灯在必须换掉前的使用天数如下,试估计这种日光灯的平均使用寿命和标准差。天数151~180181~...