电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

动态规划解TSP问题VIP免费

动态规划解TSP问题_第1页
1/7
动态规划解TSP问题_第2页
2/7
动态规划解TSP问题_第3页
3/7
用动态规划方法编程求解下面的问题:某推销员要从城市v1出发,访问其它城市v2,v3,…,v6各一次且仅一次,最后返回v1。D为各城市间的距离矩阵。问:该推销员应如何选择路线,才能使总的行程最短?D=v1v2v3v4v5v6[010203040501201830252123190510153432408164527111001856221620120]1、变量设定阶段k:已遍历过k个结点,k=1,2…6,7。K=1表示刚从V1出发,k=7表示已回到起点V1状态变量Xk=(i,Sk):已遍历k个结点,当前位于i结点,还未遍历的结点集合为Sk。则X1=(1,{2,3,4,5,6}),X6=(i,Φ),X7=(1,Φ)决策变量Uk=(i,j):已遍历k个结点,当前位于i结点,下一个结点选择j。状态转移方程:Xk+1=T(Xk,Uk)=(j,Sk-{j})第k阶段的指标函数Vk=D[i,j]。最优指标函数Fk(Xk)=Fk(i,Sk):已遍历k个结点,当前从i结点出发,访问Sk中的结点一次且仅一次,最后返回起点V1的最短距离。则Fk(i,Sk)=min{D[i,j]+Fk+1(j,Sk-{j})}1≤k≤6F7(X7)=F7(1,Φ)=02、分析:(1)k=6时,F6(i,Φ)=min{D[i,1]+F7(X7)}=D[i,1]i=2,3,4,5,6X6=(i,Φ)U6=(i,j)X7=(1,Φ)V6=D[i,j]F7(1,Φ)V6+F7(X7)(2,Φ)(2,1)(1,Φ)12012=F6(2,Φ)(3,Φ)(3,1)(1,Φ)23023=F6(3,Φ)(4,Φ)(4,1)(1,Φ)34034=F6(4,Φ)(5,Φ)(5,1)(1,Φ)45045=F6(5,Φ)(6,Φ)(6,1)(1,Φ)56056=F6(6,Φ)即k=6时,对于每一种状态X6,都有唯一的决策U6。(2)k=5时,F5(i,S5)=min{D[i,j]+F6(j,Φ)}i=2,3,4,5,6X5=(i,S5)U5=(i,j)X6=(j,Φ)V5=D[i,j]F6(j,Φ)V5+F6(X6)(2,{6}}(2,6)(6,Φ)215677=F5(2,{6})(2,{5}}(2,5)(5,Φ)254570=F5(2,{5})(2,{4}}(2,4)(4,Φ)303464=F5(2,{4})(2,{3}}(2,3)(3,Φ)182341=F5(2,{3})(3,{6})(3,6)(6,Φ)155671=F5(3,{6})(3,{5})(3,5)(5,Φ)104555=F5(3,{5})(3,{4})(3,4)(4,Φ)53439=F5(3,{4})(3,{2})(3,2)(2,Φ)191231=F5(3,{2})(4,{6})(4,6)(6,Φ)165672=F5(4,{6})(4,{5})(4,5)(5,Φ)84553=F5(4,{5})(4,{3})(4,3)(3,Φ)42327=F5(4,{3})(4,{2})(4,2)(2,Φ)321244=F5(4,{2})(5,{6})(5,6)(6,Φ)185674=F5(5,{6})(5,{4})(5,4)(4,Φ)103444=F5(5,{4})(5,{3})(5,3)(3,Φ)112334=F5(5,{3})(5,{2})(5,2)(2,Φ)271239=F5(5,{2})(6,{5})(6,5)(5,Φ)124557=F5(6,{5})(6,{4})(6,4)(4,Φ)203454=F5(6,{4})(6,{3})(6,3)(3,Φ)162339=F5(6,{3})(6,{2})(6,2)(2,Φ)221234=F5(6,{2})即k=时,对于每一种状态X5,都有唯一决策U5。(3)k=4时,F4(i,S4)=min(D[i,j]+F5(j,S5))i=2,3,4,5,6X4=(i,S4)U4=(i,j)X5=(j,S5)V4=D[i,j]F5(j,S5)V4+F5(j,S5)(2,{3,4})(2,3)(3,{4})183957=F4(2,{3,4})(2,4)(4,{3})302757=F4(2,{3,4})(2,{4,5})(2,4)(4,{5})305383(2,5)(5,{4})254469=F4(2,{4,5})(2,{5,6})(2,5)(5,{6})257499(2,6)(6,{5})215778=F4(2,{5,6})(2,{3,5})(2,3)(3,{5})185573(2,5)(5,{3})253459=F4(2,{3,5})(2,{3,6})(2,3)(3,{6})187189(2,6)(6,{3})213960=F4(2,{3,6})(2,{4,6})(2,4)(4,{6})3072102(2,6)(6,{4})215475=F4(2,{4,6})(3,{2,4})(3,2)(2,{4})196483(3,4)(4,{2})54449=F4(3,{2,4})(3,{2,5})(3,2)(2,{5})197089(3,5)(5,{2})103949=F4(3,{2,5})(3,{2,6})(3,2)(2,{6})197796(3,6)(6,{2})153449=F4(3,{2,6})(3,{4,5})(3,4)(4,{5})55358(3,5)(5,{4})104454=F4(3,{4,5})(3,{4,6})(3,4)(4,{6})57277(3,6)(6,{4})155469=F4(3,{4,6})(3,{5,6})(3,5)(5,{6})107484(3,6)(6,{5})155772=F4(3,{5,6})(4,{2,3})(4,2)(2,{3})324173(4,3)(3,{2})43134=F4(4,{2,3})(4,{2,5})(4,2)(2,{5})3270102(4,5)(5,{2})83947=F4(4,{2,5})(4,{2,6})(4,2)(2,{6})3277109(4,6)(6,{2})163450=F4(4,{2,6})(4,{3,5})(4,3)(3,{5})45559(4,5)(5,{3})83442=F4(4,{3,5})(4,{3,6})(4,3)(3,{6})47175(4,6)(6,{3})163955=F4(4,{3,6})(4,{5,6})(4,5)(5,{6})87482(4,6)(6,{5})165773=F4(4,{5,6})(5,{2,3})(5,2)(2,{3})274168(5,3)(3,{2})113142=F4(5,{2,3})(5,{2,4})(5,2)(2,{4})276491(5,4)(4,{2})104454=F4(5,{2,4})(5,{2,6})(5,2)(2,{6})2777104(5,6)(6,{2})183452=F4(5,{2,6})(5,{3,4})(5,3)(3,{4})113950(5,4)(4,{3})102737=F4(5,{3,4})...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

动态规划解TSP问题

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部