数学的三大核心领域之代数学范畴 数学发展到现在,已经成为科学世界中拥有100 多个主要分支学科的庞大的“共和国”。大体说来,数学中研究数的部分属于代数学的范畴;研究形的部分,属于几何学的范筹;沟通形与数且涉及极限运算的部分,属于分析学的范围。这三大类数学构成了整个数学的本体与核心。在这一核心的周围,由于数学通过数与形这两个概念,与其它科学互相渗透,而出现了许多边缘学科和交*学科。本章简要介绍数学三大核心领域中十几门主要分支学科的有关历史发展情况。 1、算术 算术有两种含义,一种是从中国传下来的,相当于一般所说的“数学”,如《九章算术》等。另一种是从欧洲数学翻译过来的,源自希腊语,有“计算技术”之意。现在一般所说的“算术”,往往指自然数的四则运算;如果是在高等数学中,则有“数论”的含义。作为现代小学课程内容的算术,主要讲的是自然数、正分数以及它们的四则运算,并通过由计数和度量而引起的一些最简单的应用题加以巩固。 算术是数学中最古老的一个分支,它的一些结论是在长达数千年的时间里,缓慢而逐渐地建立起来的。它们反映了在许多世纪中积累起来,并不断凝固在人们意识中的经验。 自然数是在对于对象的有限集合进行计算的过程中,产生的抽象概念。日常生活中要求人们不仅要计算单个的对象,还要计算各种量,例如长度、重量和时间。为了满足这些简单的量度需要,就要用到分数。 现代初等算术运算方法的发展,起源于印度,时间可能在10 世纪或 11 世纪。它后来被阿拉伯人采用,之后传到西欧。15 世纪,它被改造成现在的形式。在印度算术的后面,明显地存在着我国古代的影响。 19 世纪中叶,格拉斯曼第一次成功地挑选出一个基本公理体系,来定义加法与乘法运算;而算术的其它命题,可以作为逻辑的结果,从这一体系中被推导出来。后来,皮亚诺进一步完善了格拉斯曼的体系。 算术的基本概念和逻辑推论法则,以人类的实践活动为基础,深刻地反映了世界的客观规律性。尽管它是高度抽象的,但由于它概括的原始材料是如此广泛,因此我们几乎离不开它。同时,它又构成了数学其它分支的最坚实的基础。 2、初等代数 作为中学数学课程主要内容的初等代数,其中心内容是方程理论。代数一词的拉丁文原意是“归位”。代数方程理论在初等代数中是由一元一次方程向两个方面扩展的:其一是增加未知数的个数,考察由有几个未知数的若干个方程所构成的二元或三元方程组(主要是一次方程组);其二...