第1 页 共 2 6 页 数学课的基本课型 一、关于数学基本课型 (一)数学概念课 概念具有确定研究对象和任务的作用。数学概念是导出全部数学定理、法则的逻辑基础,数学概念是相互联系、由简到繁形成学科体系。数学概念不仅是建立理论系统的中心环节,同时也是提高解决问题的前提。因此,概念教学是数学基础知识和基本技能教学的核心。它是以“事实学习”为中心内容的课型。 我们认为,通过概念教学,力求让学生明了以下几点: 第一,这个概念讨论的对象是什么?有何背景?其来龙去脉如何?学习这个概念有什么意义?它们与过去学过的概念有什么联系? 第二,概念中有哪些补充规定或限制条件?这些规定和限制条件的确切含义又是什么? 第三,概念的名称、进行表述时的术语有什么特点?与日常生活用语比较,与其他概念、术语比较,有没有容易混淆的地方?应当如何强调这些区别? 第四,这个概念有没有重要的等价说法?为什么等价?应用时应如何处理这个等价转换? 第五,根据概念中的条件和规定,可以归纳出哪些基本的性质?这些性质又分别由概念中的哪些因素(或条件)所决定?它们在应用中起什么作用?能否派生出一些数学思想方法? 由于数学概念是抽象的,因此在教学时要研究引入概念的途径和方法。一定要坚持从学生的认识水平出发,通过一定数量日常生活或生产实际的感性材料来引入,力求做到从感知到理解。还要注意在引用实例时一定要抓住概念的本质特征,着力揭示概念的本质属性。 人类的认识活动是一个特殊的心理过程,智力不同的学生完成这个过程往往有明显的差异。在教学时要从面向全体学生出发,从不同的角度,设计不同的方式,使学生对概念作辩证的分析,进而认识概念的本质属性。例如选择一些简单的巩固练习来辨认、识别,帮助学生掌握概念的外延和内涵;通过变式或变式图形,深化对概念的理解;通过新旧概念的对比,分析概念的矛盾运动。抓住概念之间的联系与区别来形成正确的概念。有些存在种属关系的概念,常分散在各单元出现,在教学进行到一定阶段,应适时归类整理,形成系统和网络,以求巩固、深化、发展和运用。 (二)数学命题课 表达数学判断的陈述句或用数学符号联结数和表示数的句子的关系统称为数学命题。定义、公理、定理、推论、公式都是符合客观实际的真命题。数学命题的教学是获得新知的必由之路,也是提高数学素养的基础。因此,它是数学课的又一重要基本课型。通过命题教学,使学生学会判断命题的真伪...