第一章 习题及答案 1、已知真空中的光速 c=3*108m/s,求光在水(n=1.333 )、冕牌玻璃(n=1.51)、 火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的 光速。 解: 则当光在水中,n=1.333 时,v=2.25*108m/s, 当光在冕牌玻璃中,n=1.51 时,v=1.99*108m/s, 当光在火石玻璃中,n=1.65 时,v=1.82*108m/s, 当光在加拿大树胶中,n=1.526 时,v=1.97*108m/s, 当光在金刚石中,n=2.417 时,v=1.24*108m/s。 2、一物体经针孔相机在 屏上成一 60mm 大小的像,若将屏拉远 50mm,则像的大 小变为 70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向 不变,令屏到针孔的初始距离为 x,则可以根据三角形相似得出: 所以 x=300mm 即屏到针孔的初始距离为 300mm。 3、一厚度为 200mm 的平行平板玻璃(设 n=1.5),下面放一直径为 1mm 的金属 片。若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属 片,问纸片最小直径应为多少? 解:令纸片最小半径为 x, 则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反 射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到 金属片。而全反射临界角求取方法为: (1) 其中 n2=1, n1=1.5, 同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射 临界角的计算方法为: (2) 联立(1)式和(2)式可以求出纸片最小直径 x=179.385mm, 所以纸片 最小直径为 358.77mm。 4、光纤芯的折射率为 n1、包层的折射率为 n2,光纤所在介质的折射率为 n0,求 光纤的数值孔径(即 n0sinI 1,其中 I1 为光在光纤内能以全反射方式传播时在入 射端面的最大入射角)。 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n0sinI1=n2sinI2 (1) 而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内 传播,则有: (2) 由(1)式和(2)式联立得到 n0 . 5、一束平行细光束入射到一半径 r=30mm、折射率 n=1.5 的玻璃球上,求其会聚 点的位置。如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则 反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何 处?说明各会聚点的虚实。 解:该题可以应用单个折射面的高斯公式来解决, (2) 将第一面镀...