基本初等函数求导公式 (1) 0)(C (2) 1)(xx (3) xxcos)(sin (4) xxsin)(cos (5) xx2sec)(tan (6) xx2csc)(cot (7) xxxtansec)(sec (8) xxxcotcsc)(csc (9) aaaxxln)( (10) (e )exx (11) axxaln1)(log (12) xx1)(ln, (13) 211)(arcsinxx (14) 211)(arccosxx (15) 21(arctan )1xx (16) 21(arccot )1xx 函数的和、差、积、商的求导法则 设)(xuu , )(xvv 都可导,则 (1) vuvu )( (2) uCCu)((C 是常数) (3) vuvuuv)( (4) 2vvuvuvu 反函数求导法则 若函数)(yx在某区间yI内可导、单调且0)( y,则它的反函数)(xfy 在对应区间xI 内也可导,且 )(1)(yxf 或 dydxdxdy1 复合函数求导法则 设)(ufy ,而)(xu且)(uf及)(x都可导,则复合函数)]([xfy的导数为 dydy dudxdu dx或 ( )( )yfux 2. 双曲函数与反双曲函数的导数. 双曲函数与反双曲函数都是初等函数,它们的导数都可以用前面的求导公式和求导法则求出. 可以推出下表列出的公式: (sh )chxx (ch )shxx 21(th )chxx 21(arsh )1xx 21(arch )1xx 21(arth )1xx 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB-1tanBtanA tan(A-B) =tanAtanB1tanBtanA cot(A+B) =cotAcotB1-cotAcotB cot(A-B) =cotAcotB1cotAcotB 倍角公式 tan2A =Atan12tanA2 Sin2A=2SinA•CosA Cos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana·tan( 3 +a)·tan( 3 -a) 半角公式 sin( 2A )=2cos1A cos( 2A )=2cos1A tan( 2A )=AAcos1cos1 cot( 2A )=AAcos1cos1 tan( 2A )=AAsincos1=AAcos1sin 和差化积 sina+sinb=2sin2bacos2ba sina-sinb=2cos2basin2ba cosa+cosb = 2cos2bacos2ba cosa-cosb = -2sin2basin2ba tana+tanb=babacoscos)sin( 积化和差 sinasinb = - 21 ...