第 1 页 共 20 页 第二章 平行线与相交线 2 .1 两条直线的位置关系 一、学习目标: 1、知识目标:在具体情景中了解对顶角、补角、余角,知道对顶角相等、等角的余角相等、等角的补角相等,并能解决一些实际问题。 2、能力目标:(1)经历观察、操作、推理、交流等过程,发展空间观念、推理能力和有条理地表达的能力。(2)能运用互为余角、互为补角、对顶角等相关的知识解决一些实际问题。 3、情感目标:在活动中培养学生乐于探究、合作的习惯,体验探索成功、感受创新的乐趣,从而培养学习数学的主动性;进一步体会“数学就在我们身边” ,增强学生用数学解决实际问题的意识。 二、学习重点:了解补角、余角、对顶角,知道等角的余角相等、等角的补角相等、对顶角相等。 三、学习难点:学生探索等角的余角相等、等角的补角相等、对顶角相等的过程以及对其意义的理解,并能解决一些实际问题。初步的“说理”也是难点之一。 四、学习设计: (一)预习准备 (1 )预习书3 8 、3 9 页 (2)回顾:①什么是直角?②什么是平角? (3)预习作业: ①在一副三角板中,每块都有一个角是90°,那么其余两个角的和是多少? ②已知∠1=36°,∠2=54°,那么∠1+∠2=_________ ③已知∠1=144°,∠2=36°,那么∠1+∠2=_________ (二)学习过程: 1、创设情境,引入课题 ⑴请同学们拿出事先准备好的直角纸板,用剪刀把直角从顶点剪开,问:这两个角有什么关系? ⑵再拿出平角纸板并用剪刀把平角从顶点剪开,问:这两个角有什么关系? ⑶请同学们分别给这两个角命名— — 引入课题 2、展示新知: ⑴在一副三角尺中,每块都有一个角是90o,而其他两个角的和是90o 。一般情况下,如果两个角的和等于 90o (直角),我们就说这两个角互为余角,即其中一个角是另一个角的余角.例如,∠1 与∠2 互为余角,∠1 是∠2 的余角,∠2 也是∠1 的余角. 同样,如果两个角的和等于 180o (平角),就说这两个角互为补角,即其中一个角是另一个角的补角. ⑵符号语言:若∠1+∠2= 90o , 那么∠1 与∠2 互余。 2 1 1 2 第 2 页 共 20 页 若∠3+∠4=180o , 那么∠3 与∠4 互补。 3、注:(1)“互为”这个词语,与“互为相反数”、“互为倒数”等词语中的含义有联系,均表示成对出现; (2)互为余角以及互为补角的角,主要反映了角的数量关系,而不是角的位置关系,可以把剪下的 ∠1、∠2 ...