电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

初中经典几何证明练习题VIP免费

初中经典几何证明练习题_第1页
1/9
初中经典几何证明练习题_第2页
2/9
初中经典几何证明练习题_第3页
3/9
第 1 页 共 9 页 初中几何证明题 经典题 ( 一 ) 1、已知:如图,O 是半圆的圆心,C、E 是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF. 证明:过点G 作GH⊥AB 于H,连接OE EG⊥CO,EF⊥AB ∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E、G、O、F 四点共圆 ∴∠GEO=∠HFG ∠EGO=∠FHG=90° ∴△EGO∽△FHG ∴FGEO= HGGO GH⊥AB,CD⊥AB ∴GH∥CD ∴ CDCOHGGO  ∴ CDCOFGEO  EO=CO ∴CD=GF 2、已知:如图,P是正方形 ABCD 内部的一点,∠PAD=∠PDA=15°。 求证:△PBC 是正三角形.(初二) 证明:作正三角形 ADM,连接MP ∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∠BAD=90°,∠PAD=15° ∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP MA=BA,AP=AP ∴△MAP≌△BAP ∴∠BPA=∠MPA,MP=BP 同理∠CPD=∠MPD,MP=CP ∠PAD=∠PDA=15° ∴PA=PD,∠BAP=∠CDP=75° BA=CD ∴△BAP≌∠CDP ∴∠BPA=∠CPD ∠BPA=∠MPA,∠CPD=∠MPD ∴∠MPA=∠MPD=75° ∴∠BPC=360°-75°×4=60° MP=BP,MP=CP ∴BP=CP ∴△BPC 是正三角形 第 2 页 共 9 页 3、已知:如图,在四边形ABCD 中,AD=BC,M、N 分别是AB、CD 的中点,AD、BC 的延长线交MN于E、F. 求证:∠DEN=∠F. 证明:连接AC,取AC 的中点G,连接NG、MG CN=DN,CG=DG ∴GN∥AD,GN= 21AD ∴∠DEN=∠GNM AM=BM,AG=CG ∴GM∥BC,GM= 21BC ∴∠F=∠GMN AD=BC ∴GN=GM ∴∠GMN=∠GNM ∴∠DEN=∠F 经典题 ( 二 ) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM⊥BC 于M. (1)求证:AH=2OM; (2)若∠BAC=600,求证:AH=AO.(初二) 证明:(1)延长AD 交圆于F,连接BF,过点O 作OG⊥AD 于G OG⊥AF ∴AG=FG AB⌒ =AB⌒ ∴∠F=∠ACB 又AD⊥BC,BE⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD ∴BH=BF 又AD⊥BC ∴DH=DF ∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH)=2GD 又AD⊥BC,OM⊥BC,OG⊥AD ∴四边形OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连接OB、OC ∠BAC=60∴∠BOC=120° OB=OC,OM⊥BC ∴∠BOM= 21∠BOC=60°∴∠OBM=30° ∴BO=2OM 由(1)知AH=2OM∴AH=BO=AO 第 3 页 共 9 页 2、设MN 是圆O 外一条直线,过O 作OA⊥MN...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

初中经典几何证明练习题

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部