1 线性代数习题解答 习题一 1.计算以下行列式 2223333223(1)( 2)53 ( 1)7.15cossin(2)cossin1.sincoslog1(3)loglog1 1 10.1log11(4)(1)(1)(1)1.1113(5) 2111 123212.120273(6)541567045 1201037aabbbbaaaaaaaaaaaa 2222456178.0(7)00.01(8)112.1abacabcabcbccbcaabcabcba 2.解方程 (1) 111121 .16xx解 22121 2281 ,230 ,(1 )(3 )0 ,1 ,3 .xxxxxxxx (2) 2 221220110 .12220 ,20 ,(2 )(1 )0 .1 ,2 .xxxxxxxxxxxx 3 .解下面的线性方程组 21221222222112123123123131133132(2 )()()()(),.().,.235(3 ) 35549521 0 36 ,2 .424 ,0 ,22452xaxaxbxb abab xabab ab xabxaa ababxabxabxxxxxxxxxxxxxxxxxx 解解131233541 .210xxxxx 12312312320(4 ) 3251324xxxxxxxxx 解 3 1231231231231233121220 (1 ) 3251 (2 )324 (3 )(1 )(3 )324 (4 )(4 )(2 )321 9 / 4 (5 )43 ,3 / 4 .32 2 / 4 (6 )1 9 / 422 2 / 431 3 / 41 3 .3272 8132 2 / 41 3 / 2 84 73xxxxxxxxxxxxxxxxxxxx123.2 81 32 84 72 834xxx 4.求下列个排列的逆序数,并且说明它们的奇偶性: (1)4213 (2)542163(3)134782695 (4) ( -1)( - 2)21(1) (4213)1+2+1= 4,(2) (542163)123039,(3) (134782695)42410,(4) ( ( -1)( - 2)21)12(1)(1) / 2.4 ,4142,4n nnn nnnnnnkknkk 解偶排列,3 5.确定 i 和 j 的值,使得 9 级排列 4 (1) 1274i56j9 成偶排列; (2)3972i15j4 成奇排列. 解(1) τ (127435689)=1+2+1+1=5,奇排列, 127485639 为偶排列. (2) τ (397261584)=1+3+2+5+3+1+5=20, 397281564 为奇排列. 6.下列各项,哪些是五...