1 习 题 1 -1 1.计算下列二阶行列式: (1)xx11; (2)sincoscossin. 解 (1) 11112xxxx. (2)1)cos(sinsincoscossin22. 2.计算下列三阶行列式: (1)121223112; (2)00000dcba; (3)222111cbacba; (4)cbabaacbabaacba232. 解 (1)原式5)2(2213)1(12112)1()2(31122. (2)原式00000000000dcbacadb. (3)原式))()((222222bcacabcbacbacaabbc. (4)原式)()()2()23)((baaccbaabbaaccbabaa 3)23())(2(acbaabcbabaa. 3.证明下列等式: 333231232221131211aaaaaaaaa3332232211aaaaa3331232112aaaaa3231222113aaaaa. 证明 333231232221131211aaaaaaaaa 322311332112312213322113312312332211aaaaaaaaaaaaaaaaaa )()()(312232211331233321123223332211aaaaaaaaaaaaaaa 3332232211aaaaa3331232112aaaaa3231222113aaaaa. 4.用行列式解下列方程组: (1)643534yxyx ; (2)1236132321321321xxxxxxxxx. 解 (1)74334D,246351D,963542D, 2 所以 721 DDx,792 DDy. (2 )2 3213111132D,2 32111161311D, 4 62131611122D,6 91136111323D; 所以 111DDx,222DDx,333DDx. 习 题 1-2 1.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)4321; (2)2314; (3)1243; (4)3142; (5))2(42)12(31nn; (6)2)22()2()12(31nnn. 解 (1)是标准排列,其逆序数为0; (2)逆序有(4 1),(4 3),(4 2),(3 2),所以逆序数为4. (3)逆序有(3 2),(3 1),(4 2),(4 1),(2 1),所以逆序数为5. (4)逆序有(2 1),(4 1),(4 3),所以逆序数为3. (5)逆序有 (3 2) 1个 (5 2),(5 4) 2个 (7 2),(7 4),(7 6) 3个 „„„„„„„ ( )12(n 2),( )12(n 4),( )12(n 6),„,( )12(n )22(n) )1(n个 所以逆序数为 2)1(21nnn....