电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

三角和二项式系数的性质VIP免费

三角和二项式系数的性质_第1页
1/22
三角和二项式系数的性质_第2页
2/22
三角和二项式系数的性质_第3页
3/22
POWERPOINTPRESENTATIONMathematics数学选修2-3授课人:范国柱凯里实验高级中学§1.3.2“杨辉三角”与二项式系数的性质杨辉(南宋著名数学家)杨辉,字谦光,汉族,钱塘(今浙江杭州)人,南宋杰出的数学家和数学教育家,生平履历不详。曾担任过南宋地方行政官员,为政清廉,足迹遍及苏杭一带。他在总结民间乘除捷算法、“垛积术”、纵横图以及数学教育方面,均做出了重大的贡献。他是世界上第一个排出丰富的纵横图和讨论其构成规律的数学家。著有数学著作5种21卷,即《详解九章算法》12卷,《日用算法》2卷,《乘除通变本末》3卷,《田亩比类乘除捷法》2卷和《续古摘奇算法》2卷后三种合称为《杨辉算法》。朝鲜、日本等国均有译本出版,流传世界。杨辉还曾论证过弧矢公式,时人称为“辉术”。与秦九韶、李冶、朱世杰并称“宋元数学四大家”。杨辉在《详解九章算法》一书中还画了一张表示二项式展开后的系数构成的三角图形,称做“开方做法本源”,现在简称为“杨辉三角”。杨辉课前引入二项展开式中的二项式系数指的是那些?共有多少个?下面我们来研究二项式系数有些什么性质?我们先通过杨辉三角观察n为特殊值时,二项式系数有什么特点?一般地,对于nN*有011222()nnnnnnnrnrrnnnnabCaCabCabCabCb二项定理:一、新课引入新知探究展开式中的二项式系数,如下表所示:nba)(111211331146411510105116152015611)(ba2)(ba3)(ba4)(ba5)(ba6)(ba()nab………………0111CC012222CCC01233333CCCC0123444444CCCCC012345555555CCCCCC01234566666666CCCCCCC0121......rnnnnnnnnCCCCCC“杨辉三角”的来历及规律新知探究0)(ba1)(ba3)(ba2)(ba4)(ba5)(ba6)(ba111112113311464115510101166151520表中每行两端都是1,与这两个1等距离的系数相等;而且在相邻的两行中,除1以外的每一个数都等于它肩上两个数的和;同一行中系数先增后减。上面的表叫做二项式系数表(杨辉三角)新知探究(1)对称性:与首末两端“等距离”的两个二项式系数相等.这就是组合数的性质1:mnmnnCC(3)增减性与最大值.增减性的实质是比较的大小.1kknnCC与(2)递推性:除1以外的每一个数都等于它肩上两个数的和.这就是组合数的性质2:11mmmnnnCCC二项式系数的性质新知探究(3)增减性与最大值.增减性的实质是比较的大小.1kknnCC与1!1!1!()!(1)!(1)!kknnnnknnkCCknkkknkk所以相对于的增减情况由决定.knC1Cknkkn12111nkkkn12nk可知,当时,二项式系数是逐渐增大的,由对称性可知它的后半部分是逐渐减小的,且中间项取得最大值。新知探究(3)增减性与最大值因此,当n为偶数时,中间一项的二项式系数取得最大值;当n为奇数时,中间两项的二项式系数、相等,且同时取得最大值。2Cnn21Cnn21Cnn新知探究(4)各二项式系数的和nnnnnn2CCCC210这就是说,的展开式的各二项式系数的和等于:nba)(n2新知探究一般地,展开式的二项式系数有如下性质:nba)((1)nnnnCCC,,10mnnmnCC(2)(3)当时,(4)mnmnmnCCC1121nr1rnrnCC当时,21nrrnrnCC1nnnnnCCC210新知探究由函数图象也可以很直观地看到“对称性”、“增减性与最大值”,一目了然.还可运用函数的观点,结合“杨辉三角”和函数图象,研究二项式系数的性质.(a+b)n展开式的二项式系数是可看成是以r为自变量的函数f(r),其定义域是{0,1,2,…,n},对于确定的n,可以画出它的图像。例如:当n=6时,其图象是右图中的7个孤立点.012,,,,.rnnnnnnCCCCC,,rnC..----------1084621620f(r).....369r课堂练习1)已知,那么=;2)的展开式中,二项式系数的最大值是;3)若的展开式中的第十项和第十一项的二项式系数最大,则n=;591515,CaCb1016C9()ab()nab课堂练习a+b12619典例解析例1证明在的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和.nba)(典型例题典例解析证明在(a+b)n的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和.即证:021312nnnnnCCCC...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

三角和二项式系数的性质

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部