“多次相遇问题”解题技巧 “多次相遇”问题有直线型和环型两种模型。相对来讲,直线型更加复杂。环型只是单纯的周期问题。 一、直线型 直线型多次相遇问题宏观上分“两岸型”和“单岸型”两种。“两岸型”是指甲、乙两人从路的两端同时出发相向而行;“单岸型”是指甲、乙两人从路的一端同时出发同向而行。 (一)两岸型 两岸型甲、乙两人相遇分两种情况,可以是迎面碰头相遇,也可以是背面追及相遇。题意如果没有明确说明是哪种相遇,对两种情况均应做出思考。 1、迎面碰头相遇: 如下图,甲、乙两人从 A、B 两地同时相向而行,第一次迎面相遇在 a 处,(为清楚表示两人走的路程,将两人的路线分开画出)则共走了 1 个全程,到达对岸 b 后两人转向第二次迎面相遇在 c 处,共走了 3 个全程,则从第一次相遇到第二次相遇走过的路程是第一次相遇的 2 倍。之后的每次相遇都多走了 2 个全程。所以第三次相遇共走了 5 个全程,依次类推得出:第 n 次相遇两人走的路程和为(2n-1)S,S 为全程。 而第二次相遇多走的路程是第一次相遇的 2 倍,分开看每个人都是 2 倍关系,经常可以用这个 2 倍关系解题。即对于甲和乙而言从 a 到 c 走过的路程是从起点到 a 的 2 倍。 相遇次数 全程个数 再走全程数 1 1 1 2 3 2 3 5 2 4 7 2 … … … n 2n-1 2 2、背面追及相遇 与迎面相遇类似,背面相遇同样是甲、乙两人从 A、B 两地同时出发,如下图,此时可假设全程为 4 份,甲 1 分钟走1 份,乙 1 分钟走5 份。则第一次背面追及相遇在 a 处,再经过 1 分钟,两人在 b 处迎面相遇,到第 3 分钟,甲走3 份,乙走15 份,两人在 c 处相遇。我们可以观察,第一次背面相遇时,两人的路程差是 1 个全程,第二次背面相遇时,两人的路程差为 3 个全程。同样第二次相遇多走的路程是第一次相遇的 2 倍,单看每个人多走的路程也是第一次的 2 倍。依次类推,得:第 n 次背面追及相遇两人的路程差为(2n-1)S。 (二)单岸型 单岸型是两人同时从一端出发,与两岸型相似,单岸型也有迎面碰头相遇和背面追及相遇两种情况。 1、迎面碰头相遇: 如下图,假设甲、乙两人同时从A 端出发,假设全程为3 份,甲每分钟走2 份,乙每分钟走4 份,则甲乙第一次迎面相遇在a 处,此时甲走了2 份,乙走了4 份,再过1 分钟,甲共走了4 份,乙共走了8 份,在b 处迎面相遇,则第二次...