1 定积分相关公式: 2sin2sin2coscos2cos2cos2coscos2sin2cos2sinsin2cos2sin2sinsinctgctgctgctgctgtgtgtgtgtg1)(1)(sinsincoscos)cos(sincoscossin)sin(axxaaactgxxxtgxxxxctgxxtgxaxxln1)(logln)(csc)(cscsec)(seccsc)(sec)(22222211)(11)(11)(arccos11)(arcsinxarcctgxxarctgxxxxxCaxxaxdxCshxchxdxCchxshx dxCaadxaCxctgxdxxCxdxtgxxCctgxxdxxdxCtgxxdxxdxxx)ln(lncsccscsecseccscsinseccos22222222CaxxadxCxaxaaxadxCaxaxaaxdxCaxarctgaxadxCctgxxxdxCtgxxxdxCxctgxdxCxtgxdxarcsinln21ln211csclncscseclnsecsinlncosln22222222CaxaxaxdxxaCaxxaaxxdxaxCaxxaaxxdxaxInnxdxxdxInnnnarcsin22ln22)ln(221cossin222222222222222222222020 2 babadttfabdxxfabykrmmkFApFsFW)(1)(1,2221均方根:函数的平均值:为引力系数引力:水压力:功: 3 ·倍角公式: ·半角公式: cos1sinsincos1cos1cos12cos1sinsincos1cos1cos122cos12cos2cos12sinctgtg ·正弦定理:RCcBbAa2sinsinsin ·余弦定理:Cabbaccos2222 ·反三角函数性质:arcctgxarctgxxx2arccos2arcsin 高阶导数公式——莱布尼兹(Leibniz)公式: )()()()2()1()(0)()()(!)1()1(!2)1()(nkknnnnnkkknknnuvvukknnnvunnvnuvuvuCuv 中值定理与导数应用: 拉格朗日中值定理。时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:xxFfaFbFafbfabfafbf)(F)()()()()()())(()()( 曲率 23333133cos3cos43cossin4sin33sintgtgtgtg222222122212sincossin211cos22coscossin22sintgtgtgctgctgctg 4 空间解析几何和向量代数:...