电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

几类特殊N阶行列式的计算VIP免费

几类特殊N阶行列式的计算_第1页
1/19
几类特殊N阶行列式的计算_第2页
2/19
几类特殊N阶行列式的计算_第3页
3/19
目录1引言..........................................................22文献综述......................................................22.1国内研究现状..................................................22.2国内研究现状评价..............................................32.3提出问题......................................................33预备知识......................................................33.1N阶行列式的定义..............................................33.2行列式的性质..................................................43.3行列式的行(列)展开和拉普拉斯定理..............................53.3.1行列式按一行(列)展开..........................................53.3.2拉普拉斯定理..................................................64几类特殊N阶行列式的计算......................................64.1三角形行列式的计算............................................64.2两条线型行列式的计算..........................................84.3箭形行列式的计算..............................................94.4三对角行列式的计算...........................................104.5Hessenberg型行列式的计算....................................114.6行(列)和相等的行列式的计算.................................124.7相邻行(列)元素差1的行列式的计算...........................144.8范德蒙型行列式的计算.........................................155结论.........................................................175.1主要发现.....................................................175.2启示.........................................................175.3局限性.......................................................175.4努力方向.....................................................17参考文献...........................................................181引言行列式是代数学中的一个重要内容,在数学理论上有十分重要的地位.早在17世纪和18世纪初,行列式就在解线性方程组中出现.1772年法国数学家范德蒙(1735-1796)首先把行列式作为专门理论独立于线性方程之外研究.到了19世纪,是行列式理论形成和发展的重要时期,19世纪中叶出现了行列式的大量定理.因此,到19世纪末行列式基本面貌已经勾画清楚.行列式的计算是高等代数的重要内容之一,也是理工科线性代数的重要内容之一,同时也是学习中的一个难点.在数学和现实中有着广泛的应用,懂得如何计算行列式尤为重要.对于阶数较低的行列式,一般可直接利用行列式的定义和性质计算出结果.对于一般的N阶行列式,特别是当N较大时,直接用定义计算行列式往往是困难和繁琐的,因此研究行列式的计算方法则显得十分必要.通常需灵活运用一些计算技巧和方法,使计算大大简化,从而得出结果.本文归纳了几类特殊N阶行列式的计算方法,从这几类特殊的N阶行列式的计算中,可以总结出归纳出一些行列式的计算方法,只要将这些方法与传统方法结合起来,就可以基本上解决n阶行列式的计算问题.本文先阐述行列式的定义及其基本性质,然后介绍了几类特殊行列式的计算方法,并结合了相关例题讨论了行列式的求解方法.2文献综述2.1国内研究现状现查阅到的文献资料中,大部分只是简单的介绍了行列式的定义、行列式的性质、行列式按行(列)展开、克拉默法则等.其中[1]、[3]介绍了行列式的定义、性质、行列式按行(列)展开,[2]、[4]介绍了利用行列式的性质计算行列式,[4]、[8]直接介绍行列式的计算,主要讲解了行列式的计算在Matlab上的实现,[7]、[9]、[10]介绍了行列式的简单计算和行列式的常用计算方法,[11]、[12]、[13]同样也是介绍了行列式的性质、定义和克拉默法则,[14]在行列式的定义、性质、按行(列)展开克拉默法则等方面介绍得比较完整,[15]-[18]系统介绍了行列式计算中和各种方法,如定义法、降阶法、升降法、拆开法、目标行列式法、乘积法、化三角开法、消去法、加边法、...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

几类特殊N阶行列式的计算

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部