弧长与扇形面积、圆锥侧面积 【知识详解】 知识点1、弧长公式 因为360°的圆心角所对的弧长就是圆周长C=2R,所以 1°的圆心角所对的弧长是,于是可得半径为R 的圆中,n°的圆心角所对的弧长l 的计算公式:, 说明:(1)在弧长公式中,n 表示 1°的圆心角的倍数,n 和 180 都不带单位“度”,例如,圆的半径 R=10,计算 20°的圆心角所对的弧长l 时,不要错写成。 (2)在弧长公式中,已知l,n,R 中的任意两个量,都可以求出第三个量。 知识点2、扇形的面积 如图所示,阴影部分的面积就是半径为R,圆心角为n°的扇形面积,显然扇形的面积是它所在圆的面积的一部分,因为圆心角是 360°的扇形面积等于圆面积,所以圆心角为1°的扇形面积是,由此得圆心角为n°的扇形面积的计算公式是。 又因为扇形的弧长,扇形面积,所以又得到扇形面积的另一个计算公式:。 知识点3、圆锥的侧面积 圆锥的侧面展开图是一个扇形,如图所示,设圆锥的母线长为l,底面圆的半径为r,那么这个扇形的半径为l,扇形的弧长为2,圆锥的侧面积,圆锥的全面积 说明:(1)圆锥的侧面积与底面积之和称为圆锥的全面积。 (2)研究有关圆锥的侧面积和全面积的计算问题,关键是理解圆锥的侧面积公式,并明确圆锥全面积与侧面积之间的关系。 知识点4、圆柱的侧面积 圆柱的侧面积展开图是矩形,如图所示,其两邻边分别为圆柱的高和圆柱底面圆的周长,若圆柱的底面半径为r ,高为h ,则圆柱的侧面积,圆柱的全面积 圆锥与圆柱的比较 名称 圆锥 圆柱 图形 图形的形成过程 由一个直角三角形旋转得到的,如Rt△SOA 绕直线SO 旋转一周。 由一个矩形旋转得到的,如矩形ABCD 绕直线 AB 旋转一周。 图形的组成 一个底面和一个侧面 两个底面和一个侧面 侧面展开图的特征 扇形 矩形 面积计算方法 补充:知识点5、弓形的面积 (1)弓形的定义:由弦及其所对的弧(包括劣弧、优弧、半圆)组成的图形叫做弓形。 (2)弓形的周长=弦长+弧长 (3)弓形的面积 如图所示,每个圆中的阴影部分的面积都是一个弓形的面积,从图中可以看出,只要把扇形OAmB 的面积和△AOB 的面积计算出来,就可以得到弓形AmB 的面积。 当弓形所含的弧是劣弧时,如图1 所示, 当弓形所含的弧是优弧时,如图2 所示, 当弓形所含的弧是半圆时,如图3 所示, 例:如图所示,⊙O 的半径为2 ,∠ABC =45 ° ,则 图中阴影部分的面积是 ( )(结果...