电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

显示算法和隐式算法,单点积分算法和全积分算法

显示算法和隐式算法,单点积分算法和全积分算法_第1页
1/10
显示算法和隐式算法,单点积分算法和全积分算法_第2页
2/10
显示算法和隐式算法,单点积分算法和全积分算法_第3页
3/10
先说说显示算法和隐式算法: 这是ansys 里面的两种求解方法。 大多数非线性动力学问题一般多是采用显式求解方法,特别是在求解大型结构的瞬时高度非线性问题时,显示求解方法有明显的优越性。下面先简要对比一下隐式求解法和显示求解法。动态问题涉及到时间域的数值积分方法问题。在80 年代中期以前,人们基本上采用纽曼法进行时间域的积分。根据纽曼法,位移、速度和加速度有着如下关系: u(i+1)=u(i)+△t*v(i)[(1—2p)a(i)+2p*a(i+1)] (1) v(i+1)=V(i)+△t[(1-2q)a(i)+2qa(i+1)] (2) 上面式子中 u(i+1),u(i)分别为当前时刻和前一时刻的位移,v(i+1)和V(i)为当前时刻和前一时刻的速度,a(i+1)和a(i)为当前时刻和前一时刻的加速度,p 和q 为两个待定参数,△t 为当前时刻与前一时刻的时问差,符号 * 为乘号。由式(1)和式(2)可知,在纽曼法中任一时刻的位移、速度、加速度都相互关联,这就使得运动方程的求解变成一系列相互关联的非线性方程的求解,这个求解过程必须通过迭代和求解联立方程组才能实现。这就是通常所说的隐式求解法。隐式求解法可能遇到两个问题。一是迭代过程不一定收敛,二是联立方程组可能出现病态而无确定的解。隐式求解法最大的优点是它具有无条件稳定性,即时间步长可以任意大。 如果采用中心差分法来进行动态问题的时域积分,则有如下位移、速度和加速度关系式: u(i+1)=2u(i)-u(i-1)+a(i)(△t)^2 (3) v(i+1)=[u(i+1)-u(i-1)]/2(△t) (4) 式中u(i-1),为 i-1 时刻的位移。由式(3)可以看出,当前时刻的位移只与前一时刻的加速度和位移有关,这就意味着当前时刻的位移求解无需迭代过程。另外,只要将运动过程中的质量矩阵和阻尼矩阵对角化,前一时刻的加速度求解无需解联立方程组,从而使问题大大简化,这就是所谓的显式求解法。显式求解法的优点是它既没有收敛性问题,也不需要求解联立方程组,其缺点是时间步长受到数值积分稳定性的限制,不能超过系统的临界时间步长。 隐式求解法不考虑惯性效应[C]和[M]。对于线性问题,无条件稳定,可以用大的时间步。对于非线性问题,通过一系列线性逼近(Newton-Raphson)来求解;要求转置非线性刚度矩阵[K],收敛时候需要小的时间步,对于高度非线性问题无法保证收敛。因此,隐式求解一般用于线性分析和非线性结构静动力分析,包括结构固有频率和振型计算。 ansys 使用的Newmark 时间积分法即为隐式求解法。 显示求解法是ansys/ls-dyna 中主要的求解方法...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

显示算法和隐式算法,单点积分算法和全积分算法

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部