1 行列式的计算方法摘要: 线性代数主要内容就是求解多元线性方程组,行列式产生于解线性方程组, 行列式的计算是一个重要的问题。本文依据行列式的繁杂程度,以及行列式中字母和数字的特征,给出了计算行列式的几种常用方法:利用行列式的定义直接计算、化为三角形法、降阶法、镶边法、递推法,并总结了几种较为简便的特殊方法:矩阵法、分离线性因子法、借用“第三者”法、利用范德蒙德行列式法、利用拉普拉斯定理法,而且对这些方法进行了详细的分析,并辅以例题。关键词 : 行列式矩阵 降阶The Methods of Determinant Calculation Abstract:Solving multiple linear equations is the main content of the linear algebra, determinants produced in solving linear equations, determinant calculation is an important issue.This article is based on the complexity degree of the determinant, and the characteristics of letters and numbers of the determinant ,and then gives several commonly used methods to calculate the determinant: direct calculation using the definition of determinant, into the triangle, reduction method, edging method , recursion, and summarizes several relatively simple and specific methods: matrix, linear separation factor method, to borrow "the third party" method, using Vandermonde determinant method, using Laplace theorem,also analyze these methods in detail,and supported by examples . Keywords: determinant matrix reduction.1.引言线性代数主要内容就是求解多元线性方程组,行列式产生于解线性方程组,2 然而它除了用于研究线性方程组、矩阵、特征多项式等代数问题外, 还在各种工程领域有着广泛的应用 , 是一种不可缺少的运算工具,所以说行列式的计算是一个重要的问题。二阶行列式:22211211aaaa21121211aaaa⑴三阶行列式:332112322311312213322113312312332211333231232221131211aaaaaaaaaaaaaaaaaaaaaaaaaaa⑵由此可以看出二阶、三阶行列式计算结果的一些规律:○1 ⑵中每项都是三个数的乘积, 并由行标与列标可以看出, 这三个数分别取自行列式的不同行与不同列;○2 ⑵式正好有 6 项,它恰好是 1,2,3 全排列...