电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

独立重复试验与二项分布VIP免费

独立重复试验与二项分布_第1页
1/30
独立重复试验与二项分布_第2页
2/30
独立重复试验与二项分布_第3页
3/30
2.2.3独立重复试验与二项分布复习引入前面我们学习了互斥事件、条件概率、相互独立事件的意义,这些都是我们在具体求概率时需要考虑的一些模型,符合模型时用公式去求概率简便.⑴()()()PABPAPB(当AB与互斥时);⑵()(|)()PABPBAPA⑶()()()PABPAPB(当AB与相互独立时)那么求概率还有什么模型呢?分析下面的试验,它们有什么共同特点?⑴投掷一枚硬币5次;⑵某人射击1次,击中目标的概率是0.8,他射击10次;⑶一个盒子中装有5个球(3个红球和2个黑球),有放回地依次从中抽取5个球;(4)生产一种零件,出现次品的概率是0.04,生产这种零件4件.共同特点:1)多次重复地做同一个试验在相同的条件下,重复的做n次试验,各次试验的结果相互独立,那么就称它们为n次独立重复试验基本概念2)每次试验的结果只有两个,且相互独立3)任何一次试验中,事件A发生的概率是不变。在n次独立重复试验中,记iA是“第i次试验的结果”显然,12()nPAAA=12()()()nPAPAPA探究投掷一枚图钉,设针尖向上的概率为p,则针尖向下的概率为q=1-p.连续掷一枚图钉3次,仅出现1次针尖向上的概率是多少?连续掷一枚图钉3次,就是做3次独立重复试验。用表示第i次掷得针尖向上的事件,用表示“仅出现一次针尖向上”的事件,则(1,2,3)iAi1B1123123123()()().BAAAAAAAAA由于事件彼此互斥,由概率加法公式得123123123,AAAAAAAAA和1123123123()()()()PBPAAAPAAAPAAA22223qpqpqpqp所以,连续掷一枚图钉3次,仅出现1次针尖向上的概率是23.qp思考?上面我们利用掷1次图钉,针尖向上的概率为p,求出了连续掷3次图钉,仅出现次1针尖向上的概率。类似地,连续掷3次图钉,出现次针尖向上的概率是多少?你能发现其中的规律吗?(03)kk33(),0,1,2,3.kkkkPBCpqk仔细观察上述等式,可以发现30123()(),PBPAAAq21123123123()()()()3,PBPAAAPAAAPAAAqp22123123123()()()()3,PBPAAAPAAAPAAAqp33123()().PBPAAAp在n次试验中,有些试验结果为A,有些试验结果为A,所以总结果是几个A同几个A的一种组合,要求总结果中事件A恰好发生k次,就是k个A同n-k个A的一种组合,组合数为Ckn;其次,每一种组合发生的概率为pk·(1-p)n-k,所以P(X=k)=Cknpk(1-p)n-k.基本概念2、二项分布:一般地,在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为()(1),0,1,2,...,.kknknPXkCppkn此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率。X01…k…np……00nnCpq111nnCpqkknknCpq0nnnCpq二项分布与两点分布、超几何分布有什么区别和联系?1.两点分布是特殊的二项分布(1)p2.一个袋中放有M个红球,(NM)个白球,依次从袋中取n个球,记下红球的个数.⑴如果是有放回地取,则(,)MBnN⑵如果是不放回地取,则服从超几何分布.()(0,1,2,,)knkMNMnNCCPkkmC(其中min(,)mMn二项分布是有放回抽样,超几何分布是无放回抽样问题探究1.甲、乙、丙三人分别射击同一个目标,都是“中”与“不中”两种结果,是三次独立重复试验吗?提示:不是,因甲、乙、丙三人击中的概率不一定相同,只是独立事件,但不符合独立重复试验.10.8.10,18;28.(.)例某射手射击击中目标的概率是求这名射手在次射击中恰有次击中目标的概率至少有次击中目标的概率结果保留两位有效数字.8.0,10B~X,X则为击中目标的次数设解.30.08.018.0C8XP8,1018108810次击中目标的概率为恰有次射击中在10XP9XP8XP8XP8,102次击中目标的概率为至少有次射击中在1010101010910991081088108.018.0C8.018.0C8.018.0C.68.0变式:这名射击手射击4次,求击中次数X的分布列某气象站天气预报的准确率为80%,计算:(结果保留到小数点后第2位)(1)“5次预报中恰有2次准确”的概率;(2)“5次预报中至少有2次准确”的概率.(3)5次预报中恰有2次准确,且其中第3次预报准确的概率。例例22【思路点拨】...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

独立重复试验与二项分布

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部