电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

第一章、放电气体中粒子碰撞

第一章、放电气体中粒子碰撞_第1页
1/18
第一章、放电气体中粒子碰撞_第2页
2/18
第一章、放电气体中粒子碰撞_第3页
3/18
6 第一章 放电气体中粒子碰撞 在气体放电中,粒子间的能量交换,电子、离子的产生,都与放电气体的粒子碰撞密不可分,下面就首先介绍放电气体中的粒子碰撞过程。 §1 .1 气体碰撞的物理概念及放电气体中粒子的碰撞特性 一、 弹性碰撞与非弹性碰撞的能量转移 在普通物理中就介绍过碰撞的概念,碰撞可以分为弹性碰撞和非弹性碰撞。 弹性碰撞:参与碰撞的粒子在碰撞前后动能的总和不变,即参与碰撞的粒子没有内能变化。 非弹性碰撞:参与碰撞的粒子碰撞前后总动能发生了变化,即碰撞前后粒子有内能变化。 1、 弹性碰撞的能量转移 实际的碰撞过程非常复杂,不易处理,而对心碰撞情况比较简单,所得能量转移结果也适合于处理复杂的碰撞过程。下面就以最简单的对心碰撞(弹性)来考察弹性碰撞的能量转移情况。 所谓对心碰撞,就是碰撞前后粒子的运动速度方向不变或正好方向相反,这就变成了一维情况。而弹性碰撞满足能量守恒和动量守恒。 由能量守恒得;22221122221121212121umumvmvm (1-1-1) m 1、m 2 为参与碰撞的二粒子的质量,21,vv---粒子碰撞前的速度,21,uu--碰撞后速度。 若第二个粒子碰撞前处于静止状态(例如,电子与中性粒子碰撞,加速离子与中性气体粒子的碰撞,电子或离子的运动速度很大,中性粒子相对于电子就相当于静止),上式变成: 222211211212121umumvm (1-1-2) 由动量守恒得;221111umumvm (1-1-3) 两式联立可得:121211vmmmmu,121122vmmmu (1-1-4) 第二个粒子由原来的静止状态通过碰撞获得的动能为: 122121211221212122122121211222224214222121WmmmmvmmmmmvmmmmvmmmmumW (1-1-5) 7 从而也就得到了第一个粒子经历了弹性碰撞后,所损失的能量分数: 22121124mmmmWW (1-1-6) 在气体放电中,碰撞是一种统计效应,在对心弹性碰撞中,粒子1 能量损失最大为 ,而非对心碰撞,粒子1 的能量损失最小为0。则在弹性碰撞中,粒子1 的平均能量损失分数应为: 22121221mmmm (1-1-7) 可见,在弹性碰撞中,第二个粒子从第一个粒子所获得的能量只是第一个粒子能量的一部分,其大小与参与碰撞的两个粒子的质量有关。 当21mm (同种气体的离子与中性粒子碰撞)时,若为对心碰撞,第2 个粒子获得的最大能量为:12WW ,即第一个粒子的碰撞前的动能全部转化为粒子2 ...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

第一章、放电气体中粒子碰撞

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部