16 第二章 晶体结构 2 .1 晶体结构 1 晶格和基元 理想晶体中原子排列是十分规则的,主要体现是原子排列具有周期性,或者称为是长程有序的。非晶体则不具有长程有序的性质,但是在非晶体中原子排列也不是杂乱无章、完全无序的,仍然保留有原子排列的短程序。1984 年在实验中发现了一类和晶体、非晶体都不相同的固体,在这类固体中发现了已经证明在晶体中不可能存在的五重对称轴,使人们想到介于晶体和非晶体之间的固体,称为准晶体。在这一章我们首先讨论有关晶体的问题。 所有晶体的结构用晶格来描述,晶格是一种数学上的抽象,它是由数学上的几何点在空间有规律地作周期性的无限重复分布构成的。这种晶格的每一个格点上附有一群完全相同的原子,这样一个完全相同的原子群称为基元。当原子基元以相同的方式安置在每一个格点上,就构成了晶体结构。简单地说晶格加基元就形成晶体结构。由无数的小单晶体无规则地结合成的大晶体叫多晶体。 2 原胞和基矢 所有晶格的共同特点是具有周期性,通常用原胞和基矢来描述晶格的周期性,晶格的原胞 (Primitive cell) 是指一个晶格最小的周期性单元,对三维晶格来说是可以一个平行六面体,对二维晶格可以是一个平行四边形。原胞的选取是不唯一的。原则上讲只要是最小周期性单元都可以。判断最小周期性单元的标准只要考察这个重复单元中是否只包含一个格点。但是实际上各种晶格结构已经有习惯的原胞选取方式。晶格基矢是指原胞的边矢量,一般用 a1, a2, a3 表示。原胞的体积为: a1 a2 a3 (2.1.1) 简单立方晶格的立方单元就是最小的周期性单元,通常就选取它作为原胞。它的三个基矢为: kajaia aaa321 (2.1.2) 体心立方晶格和面心立方晶格的立方单元都不是最小的周期性单元。在体心立方晶格中,通常由一个立方顶点到最近的三个体心得到三个晶格基矢: j i k ai k j ak j ia 222321aaa (2.1.3) 以这三个晶格基矢为边的平行六面体就是相应的体心立方的原胞。 在面心立方晶格中,通常由一个立方顶点到三个相邻的面心的矢量作为晶格基矢: i k ak jaj ia222321aaa (2.1.4) 以这三个晶格基矢为边的平行六面体就是相应的面心立方的原胞。 图 2.1.1 体心立方和面心立方晶格的单胞和原胞 作由晶格原点出发的所有晶格矢量的垂直平分面...