对流扩散方程的定解问题是指物质输运与分子扩散的物理过程和黏性流体流动的数学模型,它可以用来描述河流污染、大气污染、核污染中污染物质的分布,流体的流动和流体中热传导等众多物理现象。关于对流扩散方程的求解很也备受关注,因此寻找一种稳定实用的数值方法有着重要的理论与实际意义。 求解对流扩散方程的数值方法有多种,尤其是对流占优扩散方程,这些方法有迎风有限元法,有限体积法,特征有限体积法,特征有限差分法和特征有限元法,广义差分法,流线扩散法,以及这些方法与传统方法相结合的方法如迎风广义差分法,迎风有限体积法有限体积——有限元法等这些方法数值求解效果较好,及有效的避免了数值震荡,有减少了数值扩散,但是一般计算量偏大 近年,许多研究者进行了更加深入的研究,文献提出了对流扩散方程的特征混合元法,再次基础上,陈掌引入了特征间断混合元方法,还有一些学者将特征线和有限体积法相结合,提出了特征有限体积元方法(非线性和半线性),于此同时迎风有限元也得到较大的发展,胡建伟等人研究了对流扩散问题的Galerkin部分迎风有限元方法和非线性对流扩散问题的迎风有限元,之后又有人对求解发展型对流扩散问题的迎风有限元法进行了理论分析 有限差分法和有限元是求解偏微分方程的常用数值方法, 一般情况下考虑对流占优的扩散方程,当对流项其主导作用时,其解函数具有大梯度的过渡层和边界层,导致数值计算困难,采用一般的有限元或有限体积方法虽然具有形式上的高精度,不能解决数值震荡的问题,虽然我们不能简单的将对流占优扩散方程看做对流方程,但由于次方程中含有一阶不对称的导数,对流扩散方程仍会表现出“对流效应”,从而采用迎风格式逼近,尽量反应次迎风特点,此格式简单,克服了锋线前沿的数值震荡,计算结果稳定,之前的迎风格式只能达到一阶精度,我们采用高精度的广义迎风格式,此格式是守恒的,精度高,稳定性好,具有单调性,并且是特征线法的近似,有效的避免了锋线前沿的数值震荡。 有限体积是求解偏微分方程的新的离散技术,日益受到重视。有限体积与有限差分、有限元法最大的区别及优点在于有限体积将求解区域内的计算转化到控制体积边界上进行计算,而后二者均是直接(或间接)在域内计算,故有限体积有着明显的物理涵义,在很大程度上减少计算工作量又能满足计算精度要求,加快收敛速度。由于此方法讲散度的积分化为子域边界积分后子啊离散,数值解满足离散守恒,而且可以采用非...