图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益分析:当Ui>0时,分析各点电压正负关系可知D1截止,D2导通,R1,R2和A1构成了反向比例运算器,增益为-1,R4,R3,R5和A2构成了反向求和电路,通过R4的支路的增益为-1,通过R3支路的增益为-2,等效框图如下:当Ui>0时,最终放大倍数为1,输入阻抗为R1||R4。当Ui<0时,分析各点电压的正负关系可知,D1导通,D2截止,A1的作用导致R2左端电压钳位在0V,A2的反馈导致R3右端电压钳位在0V,所以R2、R3支路两端电位相等,无电流通过,R4,R5和A2构成反向比例运算器,增益为-1,输入阻抗仍为R1||R4。因此,此电路的输出等于输入的绝对值。此电路的优点:输入阻抗恒等于R1||R4,输入阻抗低,调节R5可调节此电路的增益大小,在R5上并联电容可实现滤波功能。此电路适用低频电路,当频率大时,输出电压产生偏移,且输入电压接近0V时,输出电压失真,二极管的选型也非常重要,需选导通压降大些的。输入信号小时,也会影响最终输出。-2-1-1图2优点是匹配电阻少,只要求R1=R2图2四个二极管型分析:当Ui>0时,根据各点电压正负情况可知D1,D4导通,D2,D3截止,A1的作用导致R2左端电压钳位在0V,R3上无电流通过,所以无压降,Uo=Ui当Ui<0时,根据各点电压正负情况可知D1,D4截止,D2、D3导通,A1为反向比例运算器,增益为-R2/R1,A2为电压跟随器,所以输出电压为Uo=-Ui。此电路采用两个运放分别处理正电压和负电压的情况,所以R1和R2需配对,否则输入为负电压时电路增益不为1,。R3阻值不重要,但不能太小,否则输入为负电压时A1需向R3提供较大的电流,该电路的输入阻抗为R1。当电压过零时,A1,A2的输出电压会发生突变,因此当频率较大时,会影响结果的输出,可选用高速型运放。图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3图3高输入阻抗型分析:当Ui>0时,D1截止,D2导通,A1为同向比例放大电路,增益为1+R2/R1,A2为差分比例运算电路,Uo=-Ui当Ui<0时,D1导通,D2截止,A1为电压跟随器,A1为射随器,A2虚短,R2、R3支路上无压降,故无电流,所以R4无电流,无压降,Uo=Ui。信号源发出的信号直接连在A1,A2的正向输入端,因为电流为零,输入阻抗等于输入电压比输入电流,所以输入阻抗几乎为无穷大,高输入阻抗型所需电流很少,信号线上流动的电流也比较小,所以对信号线的要求不是很高,而且会减少电流带来的干扰。图4等值电阻型分析:当Ui>0时,D1导通,D2截止,A1为反向比例运算器,增益为-R2/R1,即为-1,R5左端电压因为A1的作用被钳位在0V,A2也可看成反向比例运算器,增益为-R4/R3,也为-1,所以输入为正电压时的增益为1.当Ui<0时,D1截止,D2导通,A1的反馈由两路组成,一是经R5反馈,二是由运放A2复合而成调节R1可调节此电路的增益,缺点:当频率大时,负电压时的复合反馈会影响信号的输出图5单运放T型当Ui>0时,D1导通,D2截止,R3下端电位被钳位在0V,R2没有回路,所以流经电流为0,即无压降,Uo=1/2Ui当Ui<0时,D1截止,D2导通,R3上无电流,无压降,增益为-R2/R1,即为-1/2,当输入正电压时,输出阻抗比较高图6单运放三角型分析:当Ui>0时,D1导通,D2截止,相当于电阻分压网络当Ui<0时,D1截止,D2导通,相当于反向放大电路,增益为-R2/R1,即为-1这两个电路的缺点都是输出阻抗比较高,输入阻抗随信号极性的变化而变化,优点就是只用了一个运放,电路结构比较简单。图7增益大于1的复合放大器型当Ui>0时,D1截止,D2导通,A1的反馈由A2经R3、R2构成,增益为1+(R3+R2)/R1,当Ui<0时,D1导通,D2截止,A1为电压跟随器,输出经R2送到A2的反向输入端,A2为反向比例运算器,增益为-R3/R2先确定R2、R3的值,再根据增益大于1便可确定R1的值图8增益等于1的复合放大器型当Ui>0时,D1截止,D2导通,R1、R3上均无电流通过,无压降,整个电路相当于电压跟随器当Ui<0时,D1导通,D2截止,相当于反向比例运算器,增益为-R2/R1只需R1=R2,增益即为1图9复合放大器输入不对称型当Ui>0时,D1导通,D2截止,A2相当于同向比例运算电路,增益为1+R4/R2当Ui<0时,D1截止,D2导通,A1的反馈由A2经...