函数凹凸性判别法与应用 祝红丽 指导老师:邢抱花摘要 函数的凹凸性是函数的重要性质之一.它反映在函数图象上就是曲线的弯曲方向,通过它可以较好地掌握函数对应曲线的性状.本文基于函数凹凸性概念的分析,着重探讨了函数凹凸性的判别方法以与在解题中的应用,如在不等式证明中的应用以与在求函数最值时的应用等 .并结合相关例题做了较详细的论述.关键词 凹凸性 导数 不等式 应用1 引言函数的凹凸理论在高等数学中占有重要地位.函数的凹凸性揭示了函数的因变量随自变量变化而变化的快慢程度,假如结合函数的其它性质,可以使我们对函数的认识更加精确.以函数在某区间上单调增加为例说明.我们不难理解,随着自变量的稳定增加,当函数的增量越来越大时,函数图形是凹的,当函数的增量越来越小时,函数图形是凸的,当函数的增量保持不变时,函数图象是直线,对于减函数我们可以作类似的分析.作为讨论分析函数的工具和方法,它在许多学科里有着重要的应用.长期以来,很多学者致力于函数凹凸性的判别法与其应用的讨论.近年来,关于函数凹凸性的判定与应用的讨论取得了一些成果,使函数凹凸性的判别法与应用更加的广泛.本文先从两个具体的函数图象为出发点,直观上观察函数图象的弯曲方向,从而引出函数凹凸性的概念和拐点的定义.并在此基础上介绍了凹凸函数的几何特征,接着介绍函数凹凸性的几种判别方法,如:用定义去判别函数的凹凸性,利用二阶导函数判别函数的凹凸性,与利用函数凹凸性的判定定理判别函数的凹凸性.其中利用函数凹凸性的概念是最基本的判别方法,利用二阶导函数与函数凹凸性之间的关系是最常用的判别方法.最后举例介绍了函数凹凸性在证明不等式、求函数最值以与函数作图中的应用.虽然说并不是所有的不等式都能利用函数的凹凸性证明,但是利用函数的凹凸性去证明某些不等式,是其它方法不可替代的.利用函数凹凸性证明不等式丰富了不等式的证明方法,开阔了解题思路 .利用导数分析函数的上升、下降,图形的凹凸性和极值.根据对这些的讨论可以帮助我们画出用公式表示的函数图形,了解函数的凹凸性能够使对函数图形的描绘更加精确化.2 凹凸函数与拐点的定义我们已经熟悉函数和的图象.0YX0Yx它们的不同之处是:曲线上任意两点间的弧段总在这两点连线的下方;而曲线则相反,任意两点间的弧段总在这两点连线的上方.我们把具有前一种特性的曲线称为凹的,相应的函数称为凹函数;后一种曲线称为凸的,相应的函数成为凸函数.函数凹凸...