电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

反比例函数提高知识讲解

反比例函数提高知识讲解_第1页
1/5
反比例函数提高知识讲解_第2页
2/5
反比例函数提高知识讲解_第3页
3/5
反比例函数(提高)[学习目标]1. 理解反比例函数的概念和意义,能根据问题的反比例关系确定函数解析式.2. 能根据解析式画出反比例函数的图象,初步掌握反比例函数的图象和性质.3. 会用待定系数法确定反比例函数解析式,进一步理解反比例函数的图象和性质.[要点梳理]要点一、反比例函数的定义一般地,形如 (为常数,)的函数称为反比例函数,其中是自变量,是函数,定义域是不等于零的一切实数.要点诠释:(1)在中,自变量是分式的分母,当时,分式无意义,所以自变量的取值围是,函数的取值围是.故函数图象与轴、轴无交点; (2) ()可以写成()的形式,自变量的指数是-1,在解决有关自变量指数问题时应特别注意系数这一条件.(3) ()也可以写成的形式,用它可以迅速地求出反比例函数的比例系数,从而得到反比例函数的解析式.要点二、确定反比例函数的关系式确定反比例函数关系式的方法仍是待定系数法,由于反比例函数中,只有一个待定系数,因此只需要知道一对的对应值或图象上的一个点的坐标,即可求出的值,从而确定其解析式. 用待定系数法求反比例函数关系式的一般步骤是: (1)设所求的反比例函数为: ();(2)把已知条件(自变量与函数的对应值)代入关系式,得到关于待定系数的方程;(3)解方程求出待定系数的值;(4)把求得的值代回所设的函数关系式 中.要点三、反比例函数的图象和性质 1、 反比例函数的图象特征:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限;反比例函数的图象关于原点对称,永远不会与轴、轴相交,只是无限靠近两坐标轴.要点诠释:(1)若点()在反比例函数的图象上,则点()也在此图象上,所以反比例函数的图象关于原点对称;(2)在反比例函数(为常数,) 中,由于,所以两个分支都无限接近但永远不能达到轴和轴.2、反比例函数的性质(1)如图 1,当时,双曲线的两个分支分别位于第一、三象限,在每个象限,值随值的增大而减小; (2)如图 2,当时,双曲线的两个分支分别位于第二、四象限,在每个象限,值随值的增大而增大;要点诠释:反比例函数的增减性不是连续的,它的增减性都是在各自的象限的增减情况,反比例函数的增减性都是由反比例系数的符号决定的;反过来,由双曲线所在的位置和函数的增减性,也可以推断出的符号.要点四、反比例函数()中的比例系数的几何意义过双曲线()上任意一点作轴、轴的垂线,所得矩形的面积为.过双曲线()上任意一...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

反比例函数提高知识讲解

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部