2024 考研数学冲刺战术经过了起步、强化这两个阶段,十一月份以后便进入了关键的冲刺阶段。总的说来,这一阶段的主要任务是重点梳理、查漏补缺和实战模拟。重点梳理、查漏补缺就是要在头脑中对考纲中的重要知识点有相当清楚的把握,及时发现自己的薄弱环节来进行针对性训练。要准确了解本专业类数学考题的题型、类别和难度特点,准确定位。目前市场上一些考研辅导材料将数学(一)和数学(二)不同要求的内容不加区分地混编在一起,甚至超纲,考生应注意识别,考纲不要求的内容坚决不要看,不必因此耗费许多宝贵的时间和精力。一、抓住大纲要求的重难点1、在微积分部分。主要是:微积分各项基本概念的背景、转换和延伸;基本运算,包括极限运算、导数、偏导数的运算,积分、二重积分的运算,以及数三要求的级数、微分、差分方程的运算,常见的题型,应注意防范的错误;常见经济函数的结构,经济应用的基本题型,优化问题及变形,边际和弹性的概念及相关问题,供求平衡及价格变化模型等;微分中值定理中关于中值存在性的证明一个中值 ξ、两个中值 ξ,η、和两个不等中值 ξ,η ;导数的应用,包括函数性质的讨论、等式与不等式的证明、方程有几个解的讨论、最值的讨论等;几何应用,平面图形的面积、旋转体体积以及引出的综合问题。2、线性代数部分。主要有:矩阵、矩阵方程的运算,化简和求解,矩阵与行列式相互关系的转换,利用矩阵计算行列式等;向量组线性相关性的判别和证明,常见的形式包括,利用线性方程组的解的状况推断,利用矩阵条件推断,利用方程组解的条件推断,利用向量组之间关系推断,矩阵的秩的计算;线性方程组解的'讨论,尤其有关两个线性方程组有公共解、同解、一个方程组的解是另一方程组的解的讨论,矩阵的特征值与特征向量,包括:矩阵定未知常数,矩阵对角化的讨论,求解可逆阵 P,使 PAP 为对角阵,及实对称矩阵性质等;一些特别矩阵相关的题型,如 A,由两个向量构造的方阵 A=αβ,初等矩阵,AB=O 等。3、概率论与数理统计部分。主要是:重要随机事件关系的概念及利用集合运算描述随机事件;随机变量的分布,离散型随机变量概率函数的运算、分布列和联合分布的生成和结构、以及在此基础上的随机变量函数的分布,一元和二元连续型随机变量的密度函数与分布函数的关系、随机变量函数的密度函数的计算,若干独立同分布随机变量之和的分布及概率计算;随机变量的期望、方差、协方差及相关性的讨论、应用;随机事件...