2010 年高考数学一轮复习精品学案(人教版 A 版)――基本初等函数一.【课标要求】1.指数函数(1)通过具体实例(如细胞的分裂,考古中所用的 14C 的衰减,药物在人体内残留量的变化等),了解指数函数模型的实际背景;(2)理解有理指数幂的含义,通过具体实例了解实数指数幂的意义,掌握幂的运算。(3)理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性与特殊点;(4)在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型2.对数函数(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;通过阅读材料,了解对数的发现历史以及对简化运算的作用;(2)通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;3.知道指数函数与对数函数互为反函数(a>0,a≠1)。4.幂函数(1)了解幂函数的概念(2)结合函数 y=x, ,y=, y=,y=,y=的图象,了解它们的变化情况二.【命题走向】指数函数、对数函数、幂函数是三类常见的重要函数,在历年的高考题中都占据着重要的地位。从近几年的高考形势来看,对指数函数、对数函数、幂函数的考查,大多以基本函数的性质为依托,结合运算推理,能运用它们的性质解决具体问题。为此,我们要熟练掌握指数、对数运算法则,明确算理,能对常见的指数型函数、对数型函数进行变形处理。预测 2010 年对本节的考察是:1.题型有两个选择题和一个解答题;2.题目形式多以指数函数、对数函数、幂函数为载体的复合函数来考察函数的性质。同时它们与其它知识点交汇命题,则难度会加大三.【要点精讲】1.指数与对数运算(1)根式的概念:① 定义:若一个数的次方等于,则这个数称的次方根。即若,则称的次方根,1)当为奇数时,次方根记作;2)当为偶数时,负数没有次方根,而正数有两个次方根且互为相反数,记作② 性质:1);2)当为奇数时,;3)当为偶数时,。(2).幂的有关概念① 规定:1)N*;2); n 个3)Q,4)、N* 且② 性质:1)、Q);2)、 Q);3) Q)。(注)上述性质对 r、R 均适用。(3).对数的概念① 定义:如果的 b 次幂等于 N,就是,那么数称以为底N 的对数,记作其中称对数的底,N 称真数1)以 10 为底的对数称常用对...