2010 年高考数学一轮复习精品学案(人教版 A 版)空间向量及其应用一.【课标要求】(1)空间向量及其运算① 经历向量及其运算由平面向空间推广的过程;② 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;③ 掌握空间向量的线性运算及其坐标表示;④ 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。(2)空间向量的应用① 理解直线的方向向量与平面的法向量;② 能用向量语言表述线线、线面、面面的垂直、平行关系;③ 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理);④ 能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用.二.【命题走向】本讲内容主要涉及空间向量的坐标及运算、空间向量的应用。本讲是立体几何的核心内容,高考对本讲的考察形式为:以客观题形式考察空间向量的概念和运算,结合主观题借助空间向量求夹角和距离.预测 2010 年高考对本讲内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处理角和距离将是主要方法,在复习时应加大这方面的训练力度.三.【要点精讲】1.空间向量的概念向量:在空间,我们把具有大小和方向的量叫做向量。如位移、速度、力等.相等向量:长度相等且方向相同的向量叫做相等向量。表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量。说明:①由相等向量的概念可知,一个向量在空间平移到任何位置,仍与原来的向量相等,用同向且等长的有向线段表示;②平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间的平移。2.向量运算和运算率 加法交换率:加法结合率:数乘分配率:说明:①引导学生利用右图验证加法交换率,然后推广到首尾相接的若干向量之和;②向量加法的平行四边形法则在空间仍成立.3.平行向量(共线向量):如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。平行于记作∥。 注意:当我们说、共线时,对应的有向线段所在直线可能是同一直线,也可能是平行直线;当我们说、平行时,也具有同样的意义。共线向量定理:对空间任意两个向量(≠)、,∥的充要条件是存在实数使=注:⑴上述定理包含两个方面:①性质定理:若∥(≠0),则有=,其中是...