斜线在平面上的射影,直线和平面所成的角 一、素质教育目标(一)知识教学点1.点在平面上的射影,点到平面的垂线段.2.有关平面的斜线的几个概念.3.有关射影的几个概念.4.射影定理.5.有关直线和平面成角的几个概念.(二)能力训练点1.加深对数学概念的理解掌握.2.初步学会依据直线与平面成角的定义用于解决成角问题的一般方法.二、教学重点、难点、疑点及解决方法1.教学重点:射影定理的叙述和记忆及直线与平面成角的概念.2.教学难点:定理的理解及有关直线与平面成角的练习.3.教学疑点及解决方法:(1)“ 斜线在平面上的射影”是“直线和平面所成的角”的基础;“斜线在平面上的射影”这一小节出现概念较多,为了便于学生理解和记忆,可以边画出课本的图形 1-30边讲解,结合图形记忆,快而且准.教学中,一般先画出斜线 AC 与平面 α 斜交于 C,再过AC 上一点 A 引 AB⊥α,垂足为点 B,连结 BC,然后指出 AC 是平面 α 上的斜线;线段 AC 是点 A 到平面 α 的斜线段,线段 AB 是点 A 到平面 α 的垂线段,点 B 是点 A 到平面 α 的垂线的垂足,直线 BC 是线段 AC 在平面 α 上的射影.(2)斜线段在平面上的射影是一条线段,斜线在平面上的射影是直线,垂线和垂线段在平面上的射影退化成一个点.(3)为照顾一般习惯说法,课本中定义射影是用“在平面上”,而说点、直线“在平面内”,并非不同.(4)射影定理中三个结论成立的前提是这些斜线段及垂线段必须是从平面外同一点向平面所引而得到的,否则,结论不成立.(5)直线和平面相交,它们的相互位置与两条相交直线一样,仍需用角来表示,但过交点在平面内可以作许多条直线,与平面相交的直线同平面内每一条直线所成的角是不相等的,为了定义的准确性,所以取这些角中有确定值的最小角,也就是取该斜线与其在平面上射影所成的锐角作为直线和平面所成的角;(6)直线和平面的位置关系可以用直线和平面成角范围来刻划;反之,由直线和平面所成角的大小也可以确定直线和平面的相互位置:② 直线和平面平行或直线在平面内,θ=0°.③ 直线和平面成角的范围是 0°≤θ≤90°.三、课时安排1 课时.四、学生活动设计常规活动.(略)五、教学步骤(一)新课概念教学1.点在平面上的射影,点到平面的垂线段自一点向平面引垂线,垂足叫做这点在这个平面上的射影.这点与垂足间的线段叫这点到这个平面的垂线段.2.平面的斜线的有...