电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学二轮复习 专题八 数学思想、数学核心素养与数学文化 第1讲 高考的热门话题——数学核心素养与数学文化学案 理-人教版高三全册数学学案

高考数学二轮复习 专题八 数学思想、数学核心素养与数学文化 第1讲 高考的热门话题——数学核心素养与数学文化学案 理-人教版高三全册数学学案_第1页
1/11
高考数学二轮复习 专题八 数学思想、数学核心素养与数学文化 第1讲 高考的热门话题——数学核心素养与数学文化学案 理-人教版高三全册数学学案_第2页
2/11
高考数学二轮复习 专题八 数学思想、数学核心素养与数学文化 第1讲 高考的热门话题——数学核心素养与数学文化学案 理-人教版高三全册数学学案_第3页
3/11
第 1 讲 高考的热门话题——数学核心素养与数学文化数学素养解读 最新《普通高中数学课程标准》(2018 年 1 月第 1 版)中明确提出数学六大核心素养:数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析.六大数学核心素养可划分成三类,其中数学抽象和直观想象是数学的物理特性,逻辑推理和数学运算体现数学的思维严谨性,数学建模和数据分析彰显数学的实际应用性.2017~2018 年全国卷高考多渠道渗透优秀传统数学文化,培养和践行社会主义核心价值观.随着新课程标准实施,高考命题必将以数学核心素养为统领,兼顾试题的基础性、综合性、应用性和创新性落实立德树人的根本任务,推动人才培养模式的改革创新.因此,我们特别策划了本专题,将数学核心素养视角下的数学命题、数学文化与高考命题相结合,选择典型例题深度解读希望能够给予广大师生复习备考提供帮助.热点一 数列与算法中的数学文化中华民族优秀传统文化博大精深和源远流长,数学高考命题注重传统文化在现实中的创造性和创新性发展,立德树人,激励学生民族自豪感和创新精神.【例 1】 (1)(2017·全国Ⅱ卷)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座 7 层塔共挂了 381 盏灯,且相邻两层中的下一层灯数是上一层灯数的 2 倍,则塔的顶层共有灯( )A.1 盏 B.3 盏 C.5 盏 D.9 盏(2)公元 263 年左右,我国数学家刘徽发现:当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值 3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出 n 的值为________(参考数据:sin 15°≈0.258 8,sin 7.5°≈0.130 5,≈1.732).解析 (1)设塔的顶层的灯数为 a1,七层塔的总灯数为 S7,公比为 q,则依题意 S7=381,公比 q=2.∴=381,解得 a1=3.(2)n=6,S=×6sin 60°=≈2.598<3.1,执行循环.n=12,S=×12sin 30°=3<3.1,执行循环.n=24,S=×24sin 15°=3.105 6>3.1,满足条件.∴输出 n 的值为 24.答案 (1)B (2)24探究提高 1.第(1)题从古代数学名著《算法统宗》引入,通过诗歌提出数学问题,阐明试题的数学史背景,考查等比数列.2.第(2)小题以刘徽的割圆术为背景,创设问题情境,将优秀传统文化嵌入到程序框图.事...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学二轮复习 专题八 数学思想、数学核心素养与数学文化 第1讲 高考的热门话题——数学核心素养与数学文化学案 理-人教版高三全册数学学案

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部