三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tan(A-B) =cot(A+B) =cot(A-B) =倍角公式tan2A =Sin2A=2SinA CosA•Cos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosAtan3a = tana·tan( +a)·tan(-a)半角公式sin( )=cos( )=tan( )=cot( )= tan( )==和差化积 sina+sinb=2sincossina-sinb=2cossincosa+cosb = 2coscoscosa-cosb = -2sinsintana+tanb=积化和差 sinasinb = - [cos(a+b)-cos(a-b)]cosacosb = [cos(a+b)+cos(a-b)]sinacosb = [sin(a+b)+sin(a-b)]cosasinb = [sin(a+b)-sin(a-b)]诱导公式 sin(-a) = -sina cos(-a) = cosasin( -a) = cosa cos( -a) = sinasin( +a) = cosa cos( +a) = -sinasin(π-a) = sina cos(π-a) = -cosasin(π+a) = -sina cos(π+a) = -cosatgA=tanA =万能公式sina=cosa=tana=其它公式a sina+b cosa=••×sin(a+c) [其中 tanc= ]a sin(a)-b cos(a) = ••×cos(a-c) [其中 tan(c)= ]1+sin(a) =(sin +cos )21-sin(a) = (sin -cos )2其他非重点三角函数csc(a) = sec(a) =双曲函数sinh(a)=cosh(a)=tg h(a)=公式一: 设 α 为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot(2kπ+α)= cotα 公式二: 设 α 为任意角,π+α 的三角函数值与 α 的三角函数值之间的关系: sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三: 任意角 α 与 -α 的三角函数值之间的关系: sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα 公式四: 利用公式二和公式三可以得到π-α 与 α 的三角函数值之间的关系: sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五: 利用公式-和公式三可以得到2π-α 与 α 的三角函数值之间的关系: sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六: ±α 及 ±α 与 α 的三角函数值之间的关系...