第 3 讲 直线、圆与椭圆的综合运用 [2019 考向导航]考点扫描三年考情考向预测2019201820171.交点、定点、定值问题第 17 题第 18 题第 17 题解析几何综合是江苏高考必考题.填空题主要考查圆锥曲线的几何性质,主要是以椭圆为背景;解答题主要考查圆、直线、椭圆的综合问题,难度较高,计算量大,重点关注交点、定点、定值及最值、范围问题.2.范围、最值问题3.探索性问题1.交点、定点、定值问题如果曲线中某些量不依赖于变化元素而存在,则称为定值,探讨定值的问题一般为解答题.求定点、定值的基本方法是:先将变动元素用参数表示,然后计算出所需结果与该参数无关;也可将变动元素置于特殊状态下,探求出定点、定值,然后再予以证明.2.范围、最值问题求解析几何中的有关范围最值问题往往通过类比、联想、转化、合理地构造函数,然后去分析、研究问题,转化问题和解决问题. 对于圆锥曲线上一些动点,在变化过程会引入一些相互联系、相互制约的量,从而使一些线段长度构成函数关系,函数思想在处理这类问题时非常有效.圆锥曲线的最值与范围问题的常见求法:(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,利用代数法解决最值与范围问题时常从以下五个方面考虑:① 利用判别式来构造不等关系,从而确定参数的取值范围;② 利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;③ 利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;④ 利用基本不等式求出参数的取值范围;⑤ 利用函数的值域的求法,确定参数的取值范围.3.探索性问题存在型探索性问题,是指判断在某些确定条件下的某一数学对象(数值、图形、函数等)不确定的问题.这类问题常常出现“是否存在”“是否有”等形式的疑问句,以示结论有待于确定.解答此类问题的思路是:通常假设题中的数学对象存在(或结论成立)或暂且认可其中一部分的结论,然后在这个前提下进行逻辑推理,若由此导出矛盾,则否定假设;否则,给出肯定结论的证明.即:“假设——推证——定论”是解答此类问题的三个步骤.交点、定点、定值问题[典型例题] (2019·高考江苏卷)如图,在平面直角坐标系 xOy 中,椭圆 C:+=1(a>b>0)的焦点为 F1(-1,0),F2(1,0).过 F2作 x 轴的垂线 l,在...