TiO2光催化原理及应用一、前言在世界人口持续增加以及广泛工业化得过程中,饮用水源得污染问题日趋严重。根据世界卫生组织得估量,地球上 22% 得居民日常生活中得饮用水不符合世界卫生组织建议得饮用水标准.长期摄入不洁净饮用水将会对人得身体健康造成严重危害 , 世界范围内每年大概有 200 万人由于水传播疾病死亡.水中得污 染物呈现出多样化得趋势,常见得污染物包括有毒重金属、自然毒素、药物、有机污染物等。常规得饮用水净化技术有氯气、臭氧与紫外线消毒以及过滤、吸附、静置等,但就是这些方法对新生得污物往往不就是非常有效,并且可能导致二次污染.包括我国在内世界范围内广泛应用得氯气消毒法,可能在水中生成对人类健康有害得高氯酸盐。臭氧消毒就是比较安全得消毒方法,但就是所需设备昂贵;而紫外线消毒法需要能源支持,并且日常得维护都需要专业得技术人员;吸附法一般需要消耗大量得吸附剂,使用过得吸附剂一般需要额外得处理。这些缺点限制了它们得应用范围,迫切需要进展一种高效、绿色、简单得净化水技术。自然界中,植物、藻类与某些细菌能在太阳光得照射下,利用光合色素将二氧化碳(或硫化氧)与水转化为有机物,并释放出氧气(或氢气)。这种光合作用就是一系列复杂代谢反应得总与,就是生物界赖以生存得基础,也就是地球碳氧循环得重要媒介。光化学反应得过程与植物得光合作用很相似。光化学反应一般可以分为直接光解与间接光解两类.直接光解为物质吸收能量达到激发态,吸收得能量使反应物得电子在轨道间得转移,当强度够大时,可造成化学键得断裂,产生其它物质。直接光解就是光化学反应中最简单得形式,但这类反应产率一般较低。间接光解则为反应系统中某一物质吸收光能后,再诱使另一种物质发生化学反应。半导体在光得照射下,能将光能转化为化学能,促使化合物得合成或使化合物(有机物、无机物)分解得过程称之为半导体光催化。半导体光催化就是光化学反应得一个前沿讨论领域,它能使许多通常情况下难以实现或不可能进行得反应在比较温与得条件下顺利进行。与传统技术相比,光催化技术具有两个最显著得特征:第一,光催化就是低温深度反应技术。光催化氧化可在室温下将水、空气与土壤中有机污染物等完全氧化二氧化碳与水等产物。第二,光催化可利用紫外光或太阳光作为光源来活化光催化剂,驱动氧化-还原反应,达到净化目得,对净化受无机重金属离子污染得废水及回收贵金属亦有显著效果。二、TiO2得性质及光催化原理许多...