第2讲数列的求和问题1.(2015·福建)在等差数列{an}中,a2=4,a4+a7=15.(1)求数列{an}的通项公式;(2)设bn=+n,求b1+b2+b3+…+b10的值.2.(2014·课标全国Ⅰ)已知{an}是递增的等差数列,a2,a4是方程x2-5x+6=0的根.(1)求{an}的通项公式;(2)求数列{}的前n项和.高考对数列求和的考查主要以解答题的形式出现,通过分组转化、错位相减、裂项相消等方法求一般数列的和,体现转化与化归的思想.热点一分组转化求和有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,即先分别求和,然后再合并.例1等比数列{an}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列.第一列第二列第三列第一行3210第二行6414第三行9818(1)求数列{an}的通项公式;(2)若数列{bn}满足:bn=an+(-1)nlnan,求数列{bn}的前n项和Sn.思维升华在处理一般数列求和时,一定要注意使用转化思想.把一般的数列求和转化为等差数列或等比数列进行求和,在求和时要分析清楚哪些项构成等差数列,哪些项构成等比数列,清晰正确地求解.在利用分组求和法求和时,由于数列的各项是正负交替的,所以一般需要对项数n进行讨论,最后再验证是否可以合并为一个公式.跟踪演练1在等差数列{an}中,a3+a4+a5=84,a9=73.(1)求数列{an}的通项公式;(2)对任意m∈N*,将数列{an}中落入区间(9m,92m)内的项的个数记为bm,求数列{bm}的前m项和Sm.热点二错位相减法求和错位相减法是在推导等比数列的前n项和公式时所用的方法,这种方法主要用于求数列{an·bn}的前n项和,其中{an},{bn}分别是等差数列和等比数列.例2(2015·衡阳联考)已知数列{an}的前n项和为Sn,且有a1=2,3Sn=5an-an-1+3Sn-1(n≥2).(1)求数列{an}的通项公式;(2)若bn=(2n-1)an,求数列{bn}的前n项和Tn.思维升华(1)错位相减法适用于求数列{an·bn}的前n项和,其中{an}为等差数列,{bn}为等比数列;(2)所谓“错位”,就是要找“同类项”相减.要注意的是相减后得到部分,求等比数列的和,此时一定要查清其项数.(3)为保证结果正确,可对得到的和取n=1,2进行验证.跟踪演练2设数列{an}的前n项和为Sn,已知a1=1,Sn+1=2Sn+n+1(n∈N*),(1)求数列{an}的通项公式;(2)若bn=,求数列{bn}的前n项和Tn.热点三裂项相消法求和裂项相消法是指把数列和式中的各项分别裂开后,某些项可以相互抵消从而求和的方法,主要适用于{}或{}(其中{an}为等差数列)等形式的数列求和.例3(2015·韶关高三联考)已知在数列{an}中,a1=1,当n≥2时,其前n项和Sn满足S=an(Sn-).(1)求Sn的表达式;(2)设bn=,数列{bn}的前n项和为Tn,证明Tn<.思维升华(1)裂项相消法的基本思想就是把通项an分拆成an=bn+k-bn(k≥1,k∈N*)的形式,从而达到在求和时某些项相消的目的,在解题时要善于根据这个基本思想变换数列{an}的通项公式,使之符合裂项相消的条件.(2)常化的裂项公式①=(-);②=(-);③=(-).跟踪演练3(1)已知数列{an},an=,其前n项和Sn=9,则n=________.(2)(2015·江苏)设数列{an}满足a1=1,且an+1-an=n+1(n∈N*),则数列前10项的和为________.1.已知数列{an}的通项公式为an=,其前n项和为Sn,若存在实数M,满足对任意的n∈N*,都有Sn0),且4a3是a1与2a2的等差中项.(1)求{an}的通项公式;(2)设bn=,求数列{bn}的前n项和Tn.提醒:完成作业专题四第2讲二轮专题强化练专题四第2讲数列的求和问题A组专题通关1.已知数列1,3,5,7,…,则其前n项和Sn为()A.n2+1-B.n2+2-C.n2+1-D.n2+2-2.已知在数列{an}中,a1=-60,an+1=an+3,则|a1|+|a2|+|a3|+…+|a30|等于()A.445B.765C.1080D.31053.在等差数列{an}中,a1=-2012,其前n项和为Sn,若-=2002,则S2014的值等于()A.2011B.-2012C.2014D.-20134.已知数列{an}满足a1=1,a2=3,an+1an-1=an(n≥2),则数列{an}的前40项和S40等于()A.20B.40C.60D....