四边形的性质和判定(2 页)Good is good, but better carries it.精益求精,善益求善。一、平行四边形的性质和判定 1. 定义: 两组对边分别平行的四边形叫做平行四边形。 2.性质: ⑴ 假如一个四边形是平行四边形,那么这个四边形的两组对边分别相等。 (简述为“平行四边形的对边相等”) ⑵ 假如一个四边形是平行四边形,那么这个四边形的两组对角分别相等。 (简述为“平行四边形的对角相等”) ⑶ 夹在两条平行线间的平行线段相等。 ⑷ 假如一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。 (简述为“平行四边形的两条对角线互相平分”) ⑸ 平行四边形是中心对称图形,对称中心是两条对角线的交点。 3.判定: (1)假如一个四边形的两组对边分别相等,那么这个四边形是平行四边形。 (简述为“两组对边分别相等的四边形是平行四边形”) (2)假如一个四边形的一组对边平行且相等,那么这个四边形是平行四边形。 (简述为“一组对边平行且相等的四边形是平行四边形”) (3)假如一个四边形的两条对角线互相平分,那么这个四边形是平行四边形。 (简述为“对角线互相平分的四边形是平行四边形”) (4)假如一个四边形的两组对角分别相等,那么这个四边形是平行四边形。 (简述为“两组对角分别相等的四边形是平行四边形” (5)假如一个四边形的两组对边分别平行,那么这个四边形是平行四边形。 (简述为“两组对边分别平行的四边形是平行四边形”)二、矩形的性质和判定 定义:有一个角是直角的平行四边形叫做矩形. 性质:①矩形的四个角都是直角; ② 矩形的对角线相等 . 注意:矩形具有平行四边形的一切性质 . 判定:①有一个角是直角的平行四边形是矩形; ② 有三个角是直角的四边形是矩形; ③ 对角线相等的平行四边形是矩形 .三、菱形的性质和判定 定义:有一组邻边相等的平行四边形叫做菱形. 性质:①菱形的四条边都相等; ② 菱形的对角线互相垂直,并且每一条对角线平分一组对角 . 注意:菱形也具有平行四边形的一切性质 . 判定:①有一组邻边相等的平行四边形是菱形; ② 四条边都相等的四边形是菱形; ③ 对角线互相垂直的平行四边形是菱形 (4).有一条对角线平分一组对角的平行四边形是菱形四、正方形的性质和判定 定义:有一组邻边相等并且有一角是直角的平行四边形叫做正方形. 性质:①正方形的四个角都是直角,四条边都相等; ② 正方形的两条...