实验报告 5判别分析(设计性实验)(Discriminant analysis)实验原理:判别分析是判别样品所属类型的一种统计方法。判别分析是在已知讨论对象分成若干类型(或组别)并已取得各种类型的一批已知样品的观测数目,在此基础上根据某些准则建立判别式,然后对未知类型的样品进行判别分类。本实验要求学生应用距离判别准则(即,对任给的一次观测,若它与第 i类的重心距离最近,就认为它来自第 i 类),对两总体和多总体情形下分别进行判别分析。实验中需注意协方差矩阵相等时,选取线性判别函数;协方差矩阵不相等时,应选取二次判别函数。实验题目一:为了检测潜在的血友病 A 携带者,下表中给出了两组数据:(t11a8)非携带者(∏1)被迫携带者(∏2)Groupx1x2Groupx1x21-0.0056-0.16572-0.34780.11511-0.1698-0.15852-0.3618-0.20251-0.3469-0.18792-0.4986-0.0861-0.08940.00642-0.5015-0.29841-0.16790.07132-0.13260.00971-0.08360.01062-0.6911-0.3391-0.1979-0.00052-0.36080.12371-0.07620.03922-0.4535-0.16821-0.1913-0.21232-0.3479-0.17211-0.1092-0.1192-0.35390.07221-0.5268-0.47732-0.4719-0.10791-0.08420.02482-0.361-0.03991-0.0225-0.0582-0.32260.16710.00840.07822-0.4319-0.06871-0.1827-0.11382-0.2734-0.00210.12370.2142-0.55730.05481-0.4702-0.30992-0.3755-0.18651-0.1519-0.06862-0.495-0.015310.0006-0.11532-0.5107-0.24831-0.2025-0.04982-0.16520.21321-0.1932-0.22932-0.2447-0.040710.15070.09332-0.4232-0.09981-0.1259-0.06692-0.23750.28761-0.1551-0.12322-0.22050.00461-0.1952-0.10072-0.2154-0.021910.02910.04422-0.34470.00971-0.228-0.1712-0.254-0.05731-0.0997-0.07332-0.3778-0.26821-0.1972-0.06072-0.4046-0.11621-0.0867-0.0562-0.06390.15692-0.3351-0.13682-0.01490.15392-0.03120.142-0.174-0.07762-0.14160.16422-0.15080.11372-0.09640.05312-0.26420.08672-0.02340.08042-0.33520.08752-0.18780.2512-0.17440.18922-0.4055-0.24182-0.24440.16142-0.47840.0282其中 x1=log10(AHF activity),x2=log10(AHF antigen)。下表给出了五个新的观测,试对这些观测判别归类;(t11b8)观测x1x21-.112-0.2792-.059-0.0683.0640.0124-.043-0.0525-.050-0.098实验要求:(1)分别检验两组数据是否大致满足二元正态性;(2)分别计算两组数据的协方差矩阵,是否可以认为两者近似相等?(3)...