正弦定理一、设计思想:定理教学中有一种简陋的处理方式:简单直接的定理呈现、照本宣科的定理证明,然后是大剂量的“复制例题”式的应用练习。本课采用实验探究、自主学习、合作交流的研究性学习方式,重点放在定理的形成、证明的探究及定理基本应用上,努力挖掘定理教学中蕴涵的思维价值。从实际问题出发,引入数学课题,最后把所学知识应用于实际问题。二、教学目标:让学生从已有的知识经验出发,通过对特殊三角形边角间数量关系的探求,发现正弦定理;再由特殊到一般,从定性到定量,探究在任意三角形中,边与其对角的关系,引导学生通过观察,猜想,比较,推导正弦定理,由此培养学生合情推理探索数学规律的数学思考能力;培养学生联想与引申的能力,探索的精神与创新的意识,同时通过三角函数、向量与正弦定理等知识间的联系来帮助学生初步树立事物之间的普遍联系与辩证统一的唯物主义观点。三、教学重点与难点:本节课的重点是正弦定理的探索、证明及其基本应用;难点是正弦定理应用中“已知两边和其中一边的对角解三角形,判断解的个数”,以及逻辑思维能力的培养。四、教学过程设计:(一)创设情境:如图,现在河岸两侧 A,B 两点间建一座桥,需要知道 A,B 间的距离.由于环境因素 不能直接测量 A,B 间的距离.你有办法间接测量 A,B 两点间的距离吗?引出:解三角形——已知三角形的某些边和角,求其他的边和角的过程。[设计意图:从实际问题出发,引入数学课题。]师:解三角形,需要用到许多三角形的知识,你对三角形中的边角知识知多少?生:······,“大角对大边,大边对大角” 师:“a>b>c ←→ A>B>C”,这是定性地研究三角形中的边角关系,我们能否更深刻地、从定量的角度研究三角形中的边角关系?引出课题:“正弦定理[设计意图:从联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构。](二)猜想、实验:1、发散思维,提出猜想:从定量的角度考察三角形中的边角关系,猜想可能存在哪些关系?[学情预设:此处,学生根据已有知识“a>b>c ←→ A>B>C”,可能出现以下答案情形。如a/A=b/B=c/C,a/sinA=b/sinB=c/sinC, a/cosA=b/cosB=c/cosC,a/tanA=b/tanB=c/tanC,······等等。][设计意图:培养学生的发散思维,猜想也是一种数学能力]2、研究特例,提炼猜想:考察等边三角形、特殊直角三角形的边角关系,提...