5.1 估计总体的分布5.2 估计总体的数字特征[学习目标] 1.学会列频率分布表,会画频率分布直方图.2.会用频率分布表或频率分布直方图估计总体分布,并作出合理解释.3.在解决问题过程中,进一步体会用样本估计总体的思想,认识统计的实际作用,初步经历收集数据到统计数据的全过程.知识点一 频率分布表与频率分布直方图1.用样本估计总体的两种情况(1)用样本的频率分布估计总体的分布.(2)用样本的数字特征估计总体的数字特征.2.作频率分布直方图的步骤(1)求极差:即一组数据中最大值和最小值的差;(2)决定组距与组数:将数据分组时,组数应力求合适,以使数据的分布规律能较清楚地呈现出来.这时应注意:①一般样本容量越大,所分组数越多;②为方便起见,组距的选择应力求“取整”;③当样本容量不超过 120 时,按照数据的多少,通常分成 5 ~ 12 组.(3)将数据分组:按组距将数据分组,分组时,各组均为左闭右开区间,最后一组是闭区间.(4)列频率分布表:一般分四列:分组、频数累计、频数、频率,最后一行是合计.其中频数合计应是样本容量,频率合计是 1.(5)画频率分布直方图:画图时,应以横轴表示分组,纵轴表示频率 / 组距. 其相应组距上的频率等于该组上的小长方形的面积.即每个小长方形的面积=组距×=频率.思考 为什么要对样本数据进行分组?答 不分组很难看出样本中的数字所包含的信息,分组后,计算出频率,从而估计总体的分布特征.知识点二 频率折线图在频率分布直方图中,按照分组原则,再在左边和右边各加一个区间.从所加的左边区间的中点开始,用线段依次连接各个矩形的顶端中点,直至右边所加区间的中点,就可以得到一条折线,我们称之为频率折线图.随着样本量的增大,所划分的区间数也可以随之增多,而每个区间的长度则会相应随之减小,相应的频率折线图就会越来越接近于一条光滑曲线.题型一 频率分布直方图的绘制例 1 调查某校高三年级男生的身高,随机抽取 40 名高三男生,实测身高数据(单位:cm)如下:171 163 163 166 166 168 168 160 168 165171 169 167 169 151 168 170 168 160 174165 168 174 159 167 156 157 164 169 180176 157 162 161 158 164 163 163 167 161(1)作出频率分布表;(2)画出频率分布直方图.解 (1)最低身高 151 cm,最高身高 180 cm,它们的差是 180-151=29,即极差为 29;确定组距为 4,组数为 8,列表如下:分组...