三 相似三角形的判定及性质互动课堂重难突破 一、三角形相似的预备定理在初中,我们已经学过相似三角形的知识,其定义是如果两个三角形的对应角相等,对应边成比例,那么称这两个三角形相似.对于三角形相似,其中对应边的比值叫做相似比(或相似系数).利用上一节所学的平行线分线段成比例定理,可得预备定理:平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形和原三角形相似.二、相似三角形的判定方法判定两个三角形相似的方法有:(1)定义法,即对应边成比例,对应角相等的三角形是相似三角形.当然有了判定定理后,就不用定义判定了,这是因为定义中的条件太多,实际上并不需要.(2)平行法,即平行于三角形一边的直线和其他两边(或两边延长线)相交,所构成的三角形与原三角形相似.这就是预备定理.最常用的是判定定理,即①判定定理 1:两角对应相等,两三角形相似;②判定定理 2:两边对应成比例,夹角相等,两三角形相似;③判定定理 3:三边对应成比例,两三角形相似.在这些判定方法中,应用最多的是判定定理 1,即两角对应相等,两三角形相似.因为它的条件最容易寻求,实际证明当中,要特别注意两个三角形的公共角.判定定理 2 则常见于连续两次证明相似时,在第二次使用此定理的情况较多.对于直角三角形相似的判定,除以上方法外,还有其特殊的方法:(1)如果两个直角三角形的两条直角边对应成比例,那么它们相似;(2)如果一个直角三角形的一条直角边和斜边与另外一个直角三角形的直角边和斜边对应成比例,那么这两个直角三角形相似;(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.在证明直角三角形相似时,要特别注意直角这一隐含条件的利用.三、相似三角形的性质如果两个三角形相似,那么它们的形状相同,只在大小上有所区别,这两个三角形的对应元素之间有很重要的关系,分别是:(1)相似三角形对应角相等,对应边成比例;(2)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比;(3)相似三角形的周长比等于相似比;(4)相似三角形的面积比等于相似比的平方;(5)相似三角形外接圆的直径比、周长比等于相似比,外接圆的面积比等于相似比的平方,利用这些关系,可以进行各种各样的求值和证明.四、刨根问底问题 在初中,我们已经学过全等三角形,两个全等三角形的大小、形状是完全一样的,相似三角形是形状相同但大小不一样的三角形,显然,当两个相似三角形...