用留数定理计算实积分一:教学内容(包括基本内容、重点、难点): 基本内容:用留数定理计算实积分的几种方法重点:用留数定理计算实积分的方法难点:定理的应用二:教学目标或要求:真正掌握用留数定理计算实积分的几种方法三、教学手段与方法:讲授、练习四、思考题、讨论题、作业与练习:5-7 用留数定理计算实积分留数定理的一个重要应用是计算某此实变函数的积分. 如,在讨论阻尼振动时 计 算 积 分, 在 讨 论 光 的 衍 射 时 , 需 要 计 算 菲 涅 耳 积 分. 在热学中将遇到积分(,b 为任意实数)如用实函数分析中的方法计算这些积分几乎是不可能的,既使能计算,也相当复杂。假如能把它们化为复积分,用哥西定理和留数定理,那就简单了。当然最关键的是设法把实变函数是积分跟复变函数回路积分联系起来. 把实变积分联系于复变回路积分的要点如下:定积分的积分区间可以看作是复数平面上的实轴上的一段,于是,或者利用自变数的变换把变成某个新的复数平面上的回路,这样就可以应用留数定理了;或者另外补上一段曲线,使和合成回路 l,l 包围着区域 B,这样 左端可应用留数定理,假如容易求出,则问题就解决了,下面具体介绍几个类型的实变定积分.一 计算型积分令, 则与均 可 用 复 变 量表 示 出 来 , 从 而 实 现 将变形为复变量的函数的愿望,此时有 同时,由于,所以,且当由变到时,恰好在圆周上变动一周。故使积分路径也变成了所期望的围线。至此,有 于是,计算积分的方法找到了,只需令即可.例 求。解 当 时, ;当 时,令 , 当 时,在 内, 仅以 为一级极点,在 上无奇点,故由留数定理 当时,在内仅以为一级极点,在上无奇点, 例 计算积分 .解:令得: 先求的奇点及其留数.令其分母为零得: 这就是的两个单极点。单极点的模为: 所以极点在单位圆内.而单极点的模为: 所以在单位圆外,在极点处. 此积分在力学和量子力学中甚为重要,由它可以求出开普勒积分:之值。为此,在前例中,用代得: 两也对 a 求导得: 令 a=1 得,即: 例 求。解 为偶函数,故 ,令 ,则 在 内部 仅有 为一级极点, ,故 , 比 较 实 部 得 , 故 .例 计算积分.解:若直接作变换,则积分复杂,若先考虑积分: 作变换:,则: 因为的阶极点。所以: 故: 比较两边的实部和虚部得:。一 计算型积分 由于,考虑添加辅助曲线与实轴上是区间 构成围线 ,则 ,其中...