考查范围:集合、逻辑、函数、导数、三角、向量、数列、不等式、立体几何、解析几何第Ⅰ卷一、选择题:本大题共12小题,每小题5分,满分60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.【湖北省黄冈市2013届高三年级3月份质量检测数学理】如图2所示的韦恩图中,A、B是两非零集合,定义集合AB为阴影部分表示的集合,若2,,{|ln(2)},{|,0}xxyRAxyxxByyex,则AB为A.{|02}xxB.{|12}xxx或C.{|012}xxx或D.{|012}xxx或【答案】D【解析】,故阴影部分表示的集合为,即.故选D.2.(宁夏银川一中2012届高三年级第三次月考数学理)若,则的值是()A.B.C.D.【答案】B【解析】由解得,所以.所以=.3.[2013·四川卷]函数y=的图像大致是()图1-5【答案】C[解析]函数的定义域是{x∈R|x≠0},排除选项A;当x<0时,x3<0,3x-1<0,故y>0,排除选项B;当x→+∞时,y>0且y→0,故为选项C中的图像.4.(理)【2012高考真题浙江理3】设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+(a+1)y+4=0平行”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】当a=1时,直线l1:x+2y-1=0与直线l2:x+2y+4=0显然平行,所以条件具有充分性;若直线l1与直线l2平行,则有:=,解之得:a=1或a=-2,经检验,均符合,所以条件不具有必要性.故条件是结论的充分不必要条件.(文)【2012高考真题浙江文4】设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+2y+4=0平行”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】若a=1,则直线l1:ax+2y-1=0与l2:x+2y+4=0平行;若直线l1:ax+2y-1=0与l2:x+2y+4=0平行,则2a-2=0即a=1.所以“a=1”是“l1:ax+2y-1=0与l2:x+2y+4=0平行”的充要条件.5.[2013·安徽卷]在下列命题中,不是公理的是()A.平行于同一个平面的两个平面相互平行B.过不在同一条直线上的三点,有且只有一个平面C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线【答案】A【解析】选项B、C、D中的都是公理,都是平面的三个基本性质.6.[2013·全国卷]已知数列{an}满足3an+1+an=0,a2=-,则{an}的前10项和等于()A.-6(1-3-10)B.(1-310)C.3(1-3-10)D.3(1+3-10)【答案】C【解析】由3an+1+an=0,得an≠0(否则a2=0)且=-,所以数列{an}是公比为-的等比数列,代入a2可得a1=4,故S10==3×=3(1-3-10).7.【2012高考山东文9】圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为()A.内切B.相交C.外切D.相离【答案】B【解析】因为两圆的圆心距为=,又因为3-2<<3+2,所以两圆相交.8.(昆明第一中学2012届高三第一次摸底测试数学理)已知(其中为正数),若,则的最小值是()A.2B.C.D.8【答案】C【解析】因为,所以,即.又为正数,所以,当且仅当,即时等号成立.故的最小值是4.9.[2013·新课标全国卷Ⅰ]某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π【答案】A【解析】由三视图可知该组合体下半部分是一个半圆柱,上半部分是一个长方体,故体积为V=2×2×4+×π×22×4=16+8π.10.【2012高考真题新课标理8文10】等轴双曲线C的中心在原点,焦点在x轴上,C与抛物线y2=16x的准线交于A,B两点,|AB|=4,则C的实轴长为()A.B.2C.4D.8【答案】C【解析】由题意可设双曲线的方程为-=1(a>0).易知抛物线y2=16x的准线方程为x=-4,联立得16-y2=a2(*),因为|AB|=4,所以y=±2.代入(*)式,得16-(±2)2=a2,解得a=2(a>0).所以C的实轴长为2a=4,故选C.11.[2013·天津卷]函数f(x)=2x|log0.5x|-1的零点个数为()A.1B.2C.3D.4【答案】B【解析】f(x)=2x|log0.5x|-1== f(x)=-2xlog2x-1在(0,1]上递减且x接近于0时,f(x)接近于正无穷大,f(1)=-1<0,∴f(x)在(0,1]上有一零点;又 f(x)=2xlog2x-1在(1,+∞)上递增,且f(...