-1-第二十一章一元二次方程21.1一元二次方程在一个等式中,只含有一个未知数,且未知数的最高次数是2次的整式方程叫做一元二次方程。一元二次方程有四个特点:(1)只含有一个未知数;(2)且未知数次数最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.(4)将方程化为一般形式:ax2+bx+c=0时,应满足(a≠0)21.2降次——解一元二次方程解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。一元二次方程有四种解法:1、直接开平方法:用直接开平方法解形如(x-m)2=n(n≥0)的方程,其解为x=±m.直接开平方法就是平方的逆运算.通常用根号表示其运算结果.2、配方法通过配成完全平方式的方法,得到一元二次方程的根的方法。这种解一元二次方程的方法称为配方法,配方的依据是完全平方公式。1.转化:将此一元二次方程化为ax^2+bx+c=0的形式(即一元二次方程的一般形式)2.系数化1:将二次项系数化为13.移项:将常数项移到等号右侧4.配方:等号左右两边同时加上一次项系数一半的平方5.变形:将等号左边的代数式写成完全平方形式6.开方:左右同时开平方7.求解:整理即可得到原方程的根-2-3、公式法公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a,b,c的值代入求根公式x=(b2-4ac≥0)就可得到方程的根。因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。21.3实际问题与一元二次方程列一元二次方程解应用题是列一元一次方程解应用题的继续和发展从列方程解应用题的方法来讲,列出一元二次方程解应用题与列出一元一次方程解应用题是非常相似的,由于一元一次方程未知数是一次,因此这类问题大部分都可通过算术方法来解决.如果未知数出现二次,用算术方法就很困难了,正由于未知数是二次的,所以可以用一元二次方程解决有关面积问题,经过两次增长的平均增长率问题,数学问题中涉及积的一些问题,经营决策问题等等.第二十二章二次函数22.1二次函数及其图像二次函数(quadraticfunction)是指未知数的最高次数为二次的多项式函数。二次函数可以表示为y=ax2+bx+c(a不为0)。其图像是一条主轴平行于y轴的抛物线。一般的,自变量x和因变量y之间存在如下关系:一般式y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,(b2-4ac)/4a);顶点式-3-y=a(x-h)2+k(a≠0,a、h、k为常数)或y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为(h,k)对称轴为x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;交点式y=a(x-x1)(x-x2)[仅限于与x轴有交点A(x1,0)和B(x2,0)的抛物线];重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。在平面直角坐标系中作出二次函数y=x2的平方的图像,可以看出,二次函数的图像是一条永无止境的抛物线。不同的二次函数图像如果所画图形准确无误,那么二次函数将是由一般式平移得到的。轴对称1.抛物线是轴对称图形。对称轴为直线x=-b/2a。对称轴与抛物线唯一的交点为抛物线的顶点P。特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)顶点2.抛物线有一个顶点P,坐标为P(-b/2a,4ac-b2)/4a)当-b/2a=0时,P在y轴上;当Δ=b2-4ac=0时,P在x轴上。开口3.二次项系数a决定抛物线的开口方向和大小。当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。|a|越大,则抛物线的开口越小。决定对称轴位置的因素-4-4.一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号时(即ab>0),对称轴在y轴左;因为若对称轴在左边则对称轴小于0,也就是-b/2a<0,所以b/2a要大于0,所以a、b要同号当a与b...